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Abstract

This paper proposes a method to estimate the amadtefficiency of energy futures markets
in terms of social welfare. Using a standard fugunearkets structural model, it can be
concluded that the error committed when using &gyprices at moment t to predict spot
prices at t+1 results in welfare losses througlousse misallocation. Therefore, the social
welfare associated with the presence of energydatmarkets can be measured using a social
loss (SL) statistic and its components. This diatis computed for six energy futures
contracts with eight maturities each with data frApril 1992 to December 2012. The results
confirm the consistency and robustness of the ndethimally, several practical uses for the
SL statistic are suggested.

Keywords futures energy markets, futures prices, spotepricsocial welfare, social loss,
functional efficiency
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1. Introduction

Throughout the past decades energy futures mahlkets received increasing attention from
researchers. One of the most promising areas adarels focuses on the informative
efficiency of petroleum futures markets, considessda fundamental factor in the functional
efficiency of these markets. Several authors, sisc@rowder and Hamed (1993), Peroni and
McNow (1998), Gulen (1998), Switzer and EI-KhouB0Q7), Maslyuk and Smyth (2009),
and Kawamoto and Hamori (2011), find evidence camfig that crude oil futures markets
are efficient, although the results about bias are not as csiveluThe paper by Kawamoto
and Hamori (2011) is closest to our approach instiese that they also used a sample of
futures contracts with different maturities. Theisults showed that the WTI crude oil futures
market was consistently efficient within the 8-mtontaturity level, but was only consistently
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! “Efficient” in this context refers to the weak forof the efficient market hypothesis, which assuthasthe
information of all past prices is reflected in tgtdaprices (Kawamoto and Hamori, 2011).
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efficient and unbiased within the 2-month level.eTanly exception to the conclusions

supporting crude oil futures efficiency is a recezgearch by Stevens (2013) in which the
WTI futures market is shown to be inefficient aatiog to the weighted least squares (WLS)
and the trimmed least squares (TLS) tests, butieffi when the ordinary least squares (OLS)
test is used.

However, the tests carried out in the literatuee @mly able to produce dichotomic results
on the existence of efficiency and are limited xaraining the efficiency of crude oil. Unlike
these authors, this paper uses a generic structooalel of futures markets in which
efficiency is measured with an indicator that eads the functional efficiency of energy
futures markets in terms of social welfare. Basedhe concept of social surplus, our model
tries to show that the error committed when usirtgres prices to estimate spot prices in the
future translates into a loss in welfare due toetlreneous allocation of resources.

The term “functional efficiency” refers to the eiency with which futures markets
perform the functions of price risk transfer andc@rdiscovery. Regarding the transfer of
price risks, participants seek to protect themselivem the variability of prices, and the
efficiency of the hedging instrument depends on tékative variation between futures
contract prices and the prices in the physical etarRrice discovery refers to the fact that
each participant in the futures markets acts usihgvailable information and their own
estimates about future price changes. In this ptggefunctional efficiency of energy futures
markets is assessed estimating the social losvederirom allocation errors that are
committed when the prices of futures contracts @wsed as estimators for prices in the
physical markets.

The rest of the paper is organised as follows:sst#wnd section presents the basic model,;
the third section develops the theoretical and dogpiindicators for the quantification of
social welfare loss in futures markets; the fowxiplains the characteristics of the data used
for the empirical analysis; in the fifth sectioretlempirical results are presented, and the
concluding remarks follow.

2. The basic model: Supply, demand and equilibriunm futures contract markets

The basic lines of the model used in this papeevdaveloped by Stein (1986). This model
was also used by Brooks (1989), Stein (1991), HA®89), Pindick and Rotemberg (1988),
Avsar and Goss (2002), and Pennings and Garciadj2@ifferent versions of this model
have been used by Kawai (1983), Turnovsky (1988hd31984), and Chari and Jagannathan
(1990). Stein’s model is based on the optimizatbmdividual decisions made by different
market participants and has several useful featufest, it theoretically explains which
variables determine equilibrium prices, equilibriopen interest and the variability of prices.
Second, it can incorporate exogenous and endogespextations, as well as participants
with different forecasting abilities. Above all, tan be used to analyse the ex-post
contribution of futures markets to social welfaneotugh the optimal inter-temporal allocation
of resources, which is the main reason why it vedscsed to be used in this paper.

Stein’s model only has two periods. In period tducers make their production decisions,
both producers and consumers decide the propodioimeir commercial positions to be
hedged with futures, and speculators decide thamwelof their investment. In periddl
exchanges are made in the physical market and ppsttions in the futures markets are
cancelled.

In general, it can be stated that commercial ppeids are attracted to energy futures
markets by the possibility of protecting themselfresn price risks. On the other hand, the
variability of these same prices attracts spectdadnd determines their corresponding level
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of expected benefits. As a result of the participahedging or speculative decisions, an
optimal level of production and an optimal positiarthe futures market is obtained.

The literature on commodities futures markets traally assumes that speculative
transactions result in net long speculative passtioAccordingly, the only commercial
participants included in Stein’s model are assuntetiold a net short position in energy
futures contracts, i.e. they are sellers hedgiragnsg the risk of falling prices. In the model,
futures prices determine production, while consuompgxogenously equals production.

The equilibrium of the futures market gives a fespression for,.,(t), the price int of a
futures contract maturing i+ 1:

Qe+1(t) = (1 = 8)Emp(t + 1) (1)

E,.p is the subjective expectation of the prices exgmkdn t for period t +1 by
commercial participants and speculators, &nd a parameter that reflects the sufficiency or
insufficiency of speculation to attend the needdommercial hedging or hedging pressure.
At the same time, if the quality of the hedgingtioment is assumed to be perfeahe
equilibrium of the goods market determines that:

Qes1(t) = cS(t+ 1) (2)

Equation (2) is the market supply function sincKt + 1) is the aggregate marginal
production cost when marginal costs of individuainenercial participants are assumed to be
linear andc is the slope of the individual supply functionstbé commercial participants.
Using (1) the supply could be written in termstué subjective expectation of the participants
in the market about the spot price of the commodity

0=Ep(t+1;t)= ﬁsa +1) 3)

On the other hand, since consumption exogenouskalegroduction in the model, the
market demand function can be given as:

Dt+1D)=p(t+1)=u"(t+1)—-bS(t+1) (4)

where b is the slope of the individual demand fiomst of the commercial participants.
Considering that*(t + 1) is a random parameter relevant to the second ghedemand
D(t+1) follows an unknown probability distribution and
p*(t +1) is the random spot price i+ 1. ED(t + 1) is the objective expectation of
demand, and its expression is:

ED(t+1)= Ep(t+1)=Fu(t+1)—bS(t+1) (5)

Ep(t + 1) is the expected value of the spot price. The diffee between the value D and
its objective expectation ED is known as the irebi¢ errore(t + 1). This error is due to the
unpredictable variation of the random parametearnotind its expected valug:(t + 1). This
difference can be shown to be equakfo+ 1) = p(t + 1) — Ep(t + 1), and is represented
in Figure 1 by the segment B

2 The quality of the hedging instrument is measuasdthe correlation coefficient between the pricethef
underlying commodity of the futures contract and price of the actual product relevant to the hesigéhe
quality of the hedging instrument is perfect whén= 1.

% Since the error is inevitablB[s(t + 1)] = 0.
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Figure 1. Social loss associated with the suboptimal allooatf resources
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Lacking the capacity for perfect forecast, compsmian only attempt to predict the value
of the objective expectation of demand ED. Thetualcestimation of ED is known as the
subjective expectation of demaggD.

E,Dt+1)=E,p(t+1)=E,u(t+1)—bS(t+1) (6)

The difference between both expectations of the ateinfunction is known as the
Bayesian errory,,(t), represented in Figure 1 as the segment EC. Itbearshown that
ym(t) = Ep(t + 1) — E,,p(t + 1;t). For convenience, Figure 1 represents D>ERDBEbut
it need not be so.

The intersection of the supply curve wiij D determines the subjective expectation of the
equilibrium price and the amount to be produced. im turn, E,,p(t + 1;t) and the risk
premium determines the futures prigg.,(t), as is shown in equation (1). Eventually, the
productionS(t + 1) reaches the market i+ 1 and is faced with the actual demand curve D,
which results ip(t + 1).

The consideration or not of a risk premium (embddie the parametef) affects the
futures price because it shifts the supply fungtamcan be seen from equation (3): the actual
supply curve O irFigure 1 shifts to the left of the risk-free supfiymction s because a
positive risk premium is assumed. Therefore théade between these two curves (EF in
Figure 1) represents the risk premium, givenElyp — q;,1(t), that can be considered the
third source of forecast error.

Let us take a step back to put these conceptsrepgeetive. Stein (1981) identified two
types of social loss in the forward markets: thevidable and the unavoidable. The
unavoidable error represents the difference betwikenmarket equilibrium price and the
expected equilibrium price. The avoidable errothis gap between the expected equilibrium
price and the forward price. This model was expdrmeStein (1986) for futures markets. He
identified three types of errors: the inevitableoerthe Bayesian error and the risk premium.
For futures markets the unavoidable error is callezlitable; the Bayesian error occurs
because of the difference between the subjectideoljective expected price of the contract;
finally, the risk premium occurs when expected dedn@xceeds marginal cost.

The inevitable and Bayesian errors plus the rigkmpum comprise the total forecast error:
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p(t+1) = qe1(t) = [p(t + 1) — Ep] + [Ep — Epup] + [EmP — qe+1(0)] (7)

3. Social loss in the model

S(t + 1) (see Figure 1) is the volume of output that reachesnarket at + 1, while Sy is
the optimal volume of production, which is obtairfeaim the intersection of ©and actual
demand D. Following Stein (1986), we assume thatldlss of social welfare —or simply
social loss— is the triangular area ABF betweenetifective demand curve and the marginal
cost curve (@), between the actual outpS{t + 1) and the perfect-foresight equilibrium
output S,,¢, While the triangle AGH represents the inevitablEial loss caused by the
random parametar*(t + 1) included in D (see equation 4). Therefore, totaia loss can
be represented with the expression:

L+ 1) = 2 [0+ 1) ~ s O] [Sope — SC + D] ®

This value is the product of the price forecasbrmnd the deviation of production
S(t +1) from the optimal value,,,. Since the production deviation depends on theepri
deviatiorf, the loss of social welfare can be rewritten as:

L(t+1) =K[p(t+1) — qr41(®)]* withK = 9)

2(b+c¢)

Therefore, ex-post social log§t + 1) is a multiple K of the square of the price dewati
between the subsequently realized cash price- 1) and the futures price.

Stein (1986) defines the social loss statistic Stha ratio of the social loggt + 1) to the
minimum or inevitable social lods,. Using equation (9), it can be seen that the derpec
social lossE[L(t + 1)] is equal to the constaKttimes the mean squared errdfSE) of the
price forecast fort + 1. On the other hand, the expectation of the inblatasocial loss
E(LQ) = E K[e(t + 1)]? can be written a& times MSE,. Therefore, the value d€ is not
needed to compute the SL statistic for the estonatf social welfare loss:

_E[L(t+1)] EK[p(t+1)—qq (] MSE(+1)
 E(Ly) E K[e(t + 1)]? ~ MSE,
At the same time that we move from two periods taae realistic k periods, we define
the empirical equivalent ¢ SE (k) as:
n
1
MSE(K) = ) [Inp(t + K) = Ingeyi () GEY
t=1
wheren is the number of observations in the dM&E (k) is the mean squared error derived
from the estimation of the spot price in pertodl k using the price im of the futures contract
which expiresk periods later. On the other hamd$E (1) will be used as an empirical proxy

of the unobservable minimum expected social MS%,. Thus the last term in (10) can be
rewritten as:

(10)

MSE (k)

SLK) = sEq)

(12)

* According to Stein (1986 )%pr S(t+1)=[p(t+1)-01(t))/(b+c), with b andc indicating the slopes of individual
demand and supply functions respectively, as ineichefore.
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In a similar way, the decomposition of the foreaaisor in (7) contains only theoretical
variables that could only be used if observableigare found. Fortunately, an alternative
method provides an empirical equivalent for the decomimsiof MSE (k) according to the
type of error:

MSE(k) = E[p(t + k) = g1 (D1 = @ — D* + [0;(1 = D)]* + (1 =)oy (13)

wherep andq are the means of spot and futures prices duriagelevant periodag is the
variance of spot pricesy, is the standard deviation of futures pricdsis the regression
coefficient ofp overq, andr is the correlation coefficient betweprandg. The first term is
the part ofMSE which is derived from the difference between theamvalues of spot and
future prices, the second is due to the risk premithich separates the value dffrom the
unit, and the third is a composition of the inebitaand Bayesian errors.

Now, the empirical approximation 81.(k) in (12) includes squared terms that exaggerate
the absolute differences between the values ofttitestic and reduce the informative content
of the computed mean of forecast deviations. Faligwthe method applied by Ma (1989) in
his efficiency contrasts, the squared root of theam squared error can be used as an

alternative:
1

RMSE (k) = [%Z[lnp(t +1) — Ingek (]2 (14)
so that: =
_ RMSE (k)
SL(k) = RMSE(D) (15)
4. Data

The energy futures contracts selected for the eoapiranalysis are traded in the
Intercontinental Exchange (ICE), at London, anthenChicago Mercantile Exchange (CME).
Six products and eight maturities from each futuwestract were selected: crude Brent and
diesel from ICE; and WTI (West Texas Intermediata)de oil, heating oil, gasoline, and
natural gas from CME. Our analysis is based on hiprdata between April 1992, and
December 2012. The analysis was repeated for gulegeriods: 1992-1996, 1997-2006 and
2007-2012. The selection of these three sub-penwas determined by years in which
important financial crises took place: 1997 for 8wmuth-East Asian crisis, and 2007 for the
recent international financial crisis. All of thegeducts have registered a significant trading
volume, and the open interest in each contracigiseln than those negotiated in other energy
futures markets.

Following Kumar's (1991) approach, we used futyveses corresponding to the last
trading day of each month during the period of gtu€umar tested the hypothesis that the
last futures price of each month contains all r@vnformation up to that moment, which is
why those prices should be more accurate in phiadigtrices in the future. He concluded that
price predictions made during the last trading dagre superior to those obtained with
alternative methods.

®Vid. Maddala (1977) and Stein (1986).
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5. Results
The SL statistic

It was explained in previous sections that the &itigtic is a way of quantifying the social
welfare loss which can be attributed to errors nedption that agents commit when
estimating physical market prices with futures nearrices as a reference. As stated earlier,
the minimum social loss of using a futures priceamsestimator is related to the contract
closest to maturity, and this was considered tleeiiable social loss. The values computed
for the SL statistic are presented in Table 1.

As expected, for every sub-period as well as fer\lnole period 1992-2012, SL values
increase for every product with the distance totreamh maturity, showing that futures prices
see their capacity for prediction reduced wheén increases. However, SL values
corresponding to natural gas, heating oil and gasahcrease less markedly with the distance
to maturity than those of Brent, WTI and gasoil. relgpecifically, the SL values of natural
gas increase the least (slightly over 61% for \alokek between 2 and 8) and those of gasoil
the most (almost 137% for the same maturities).

Table 1 ranks energy futures according to totalv8lues for the closest maturity (k=2).
Natural gas and heating oil futures contracts priesethe lowest values of the SL statistic
(less social welfare loss), while gasoil futuresganted the greatest for all maturities. The
social welfare loss associated with Brent, gasolne WTI contracts was significantly
greater than that of natural gas or heating oil,rbuch less than that of gasoil. However, the
specific ranking varies somewhat lasncrease¥ Significantly, the futures contracts whose
associated SL values increased most with the tommadturity are usually those that fare
worse when considering the absolute SL values aedversa.

Also quite interesting are the results that canlfasvn from observing the rate of variation
of the SL statistic over time. Between the firstldhe last sub-periods (1992-1996 and 2007-
2012), heating oil, gasoil, and natural gas futymesented the greatest increases in SL values
for everyk (on average 32.5%, 31.5% and 30.6% respectivelfjjie the gasoline market
presented a reduction in social loss with an aweEg32.1%. WTI and Brent crudes also
showed positive variations for every maturity (26.4nd 16.4% respectively on average),
around half the increase recorded for heatinghailural gas and diesel contracts. In summary,
during the period 1992-2012 energy futures cordgrdiztve generally shown increases in
social welfare loss, with the exception of gasofumeires which showed a clear improvement
in the behaviour of the SL statistic. These incesa® reductions could have multiple causes,
such as changes to the features of futures costreltanges in the international environment
of the physical markets, the international finahcigsis, etc.

® The ranking stays as shown in Table 1 for k=2ubto4, but then changes and stays the same fothkeGgh
8. From lower to higher SL values, this second ongdeis as follows: natural gas, heating oil, Bregdsoline,
WTI and gasoil.
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Table 1.SL (k) values for 1992-2012 and three sub-periods

SL k=2 k=3 k=4 k=5 k=6 k=7 k=8
Heating oil
Total 1.19 1.42 1.63 1.84 2.03 2.17 2.31
1992-1996 1.12 1.29 1.44 1.59 1.75 1.90 2.08
1997-2006 1.14 1.30 1.38 1.44 1.48 1.50 1.52
2007-2012 1.37 1.78 2.18 2.55 2.85 3.04 3.16
Natural gas
Total 1.32 1.50 1.67 1.82 1.93 2.02 2.13
1992-1996 1.27 1.41 1.43 1.45 1.49 1.51 1.53
1997-2006 1.34 1.48 1.65 1.77 1.83 1.91 2.01
2007-2012 1.36 1.64 1.97 2.27 2.49 2.68 2.87
Brent crude oil
Total 1.60 2.02 2.38 2.67 2.93 3.15 3.31
1992-1996 1.59 2.06 2.34 2.53 2.65 2.70 2.75
1997-2006 1.53 1.85 2.14 2.40 2.67 2.95 3.18
2007-2012 1.70 2.25 2.70 3.07 3.35 3.53 3.63
WTI crude oll
Total 1.62 2.07 2.47 2.80 3.08 3.31 3.46
1992-1996 1.64 2.13 2.37 2.57 2.68 2.71 2.75
1997-2006 1.58 1.94 2.25 2.54 2.85 3.16 3.41
2007-2012 1.66 2.21 2.73 3.13 3.42 3.61 3.70
Gasoline
Total 1.76 2.26 2.53 2.77 2.99 3.17 3.34
1992-1996 1.92 2.53 2.93 3.27 3.64 3.89 4.09
1997-2006 2.14 2.70 2.90 3.10 3.33 3.65 4.01
2007-2012 1.52 1.97 2.29 2.55 2.74 2.83 2.87
Gasoil
Total 1.87 2.46 2.98 3.41 3.82 4.15 4.43
1992-1996 1.75 2.23 2.57 2.80 2.94 2.97 3.00
1997-2006 1.83 2.32 2.69 3.03 3.38 3.75 4.08
2007-2012 2.00 2.80 3.60 4.23 4.80 5.16 5.45

Decomposition of the social loss according to tgperror

The decomposition of the MSE will be used as a primt the decomposition of the SL
statistic. As shown in equation (15), the numer&ahe square root of MSE(K) and so the
percentage of error decomposition is the same it loases; besides, the denominator
RMSE(1) remains unchanged for all values of k. this reason the decomposition of the
MSE(k) have been used as the empirical equivaletiieodecomposition of SL(K).

Table 2 presents the percentage composition dfithié error by type of error. It should be
remembered that there are three components of tB&:Mnean difference (MD), risk
premium (RP), and the sum of the inevitable andeBen errors (IB).
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Table 2. Decomposition of forecast errors, 1992-2012 (%)

MSE k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
Heating oil
MD 13.0 11.7 10.2 9.7 9.5 9.6 10.0 104
RP 2.3 2.1 2.2 2.3 2.4 2.6 2.8 3.0
B 84.7 86.2 87.5 88.0 88.1 87.8 87.2 86.6
Natural gas
MD 3.4 2.9 2.6 2.3 2.2 2.1 1.9 1.7
RP 6.1 9.0 11.5 13.7 15.6 16.8 17.9 18.9
B 90.5 88.0 85.9 84.0 82.2 81.1 80.2 79.4
Brent crude oil
MD 0.1 0.7 1.4 2.0 2.7 3.4 4.2 5.1
RP 0.9 1.3 1.8 2.2 2.4 2.8 3.0 3.2
B 99.0 98.0 96.8 95.8 94.8 93.8 92.8 91.8
WTI crude oll
MD 0.0 0.2 0.7 1.2 1.7 2.3 29 3.6
RP 2.3 2.9 3.6 4.2 4.7 5.2 5.6 5.8
B 97.7 96.9 95.7 94.6 93.6 92.5 91.5 90.6
Gasoline
MD 1.9 0.0 0.2 0.7 15 2.3 3.3 4.4
RP 15 0.1 0.0 0.1 0.2 0.4 0.6 0.9
B 96.6 99.9 99.8 99.2 98.3 97.3 96.1 94.8
Gasoil
MD 4.4 2.9 2.8 29 3.2 3.5 3.9 4.5
RP 1.2 0.8 0.9 1.1 1.2 15 1.8 2.1
B 94.3 96.3 96.2 96.0 95.6 95.0 94.2 93.4

For all maturities most of the error is explainegdtbe 1B component. As expected, the
results show that the closest a futures contract msaturity, the greatest part of the total error
is caused by the IB component, whereak asreases, the error explained by MD and/or RP
becomes relatively larger. The heating oil presgnke greater error due to MD, and then
gasoil and natural gas. The natural gas was thaamrwith the highest content of error
caused by RP, accounting for 18.9% of the errok &t 8, while the weight of the RP
component in the other products did not exceed 5.8%

6. Concluding remarks

This paper has presented a useful and simple neasuat of the functional efficiency of
futures energy markets. It has been confirmedtti@SL statistic is a consistent indicator that
can be used to quantitatively estimate social bsssociated with the use of energy futures
markets for spot price forecasting by using core@pd tools related to social surplus theory.
It was found that between 1992 and 2012 heating didsel, and natural gas contracts
presented the greatest increases in social loske thle gasoline market presented a reduction
in social loss almost as great as the increaskearother markets. WTI and Brent contracts
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showed less variation of the SL statistic than radtgas and diesel futures. Therefore, the
increase in welfare as measured by the reducticsoofal loss only took place in gasoline
futures markets.

The futures contracts whose associated SL valwesased most with the time to maturity
are usually those that fare worse when consideénegbsolute SL values and vice versa.

Natural gas and heating oil were the futures cotgravhich, on average, showed less
social loss in terms of welfare, i.e. presentedweel value of the statistic SL. On the other
hand, gasoil presented the greatest social loak of the products studied.

Regarding the decomposition of the error, for &ilhe contracts the great majority of the
error was caused by inevitable and Bayesian eridatural gas is the product with the
greatest error content explained by the presenagaigk premium.

Concerning the evolution of functional efficiencyeo time, during the period 1992-2012
energy futures contracts have generally shown @sa® in social welfare loss, with the
exception of gasoline futures. The general rednanahe ability of energy futures markets to
accurately forecast cash prices may have multigleses, either poorer market performance or
greater price volatility for energy products. Up mow no specific studies have been
published, but the higher volatility in the physdiozarkets—especially since 2007—seems to
be the most probable explanation of the results.

A great deal of exploring is still needed in thiea One way of explaining the evolution
of the SL statistic over time would be to analyse behaviour of the spot markets of energy
products, and also the changes in futures markdtsators such as open interest and trading
volume. These indicators were only taken into antauw this paper as criteria for selecting
the contracts to be considered, given that theggrfetures that were chosen were those with
higher open interest and trade volume. Another whgxploring the quantification of the
contribution of futures markets to social welfamlkd be the comparison between the values
of the SL statistic associated with futures markdth the values of the indicator in forward
energy markets, as was suggested by Stein (198ially; a natural expansion of this
research would be to apply this quantification mdtto other groups of commodities, such as
food and metals.
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