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Abstract 

In this paper we discuss some of the issues that energy researchers and regulators could address in two 

different areas of the application of stochastic frontier analysis (SFA) in Energy Economics: i) the 

estimation of productive or cost efficiency of electricity and gas distribution networks, and ii) the 

estimation of energy demand frontier models. Our review examines common problems that often 

appear using standard frontier models, such as the selection of input (cost) and output variables, the 

integration of quality incentives in cost benchmarking, the impact of distributed energy resources, or 

the effect of both unobserved heterogeneity and observed (e.g. environmental, socioeconomic, etc.) 

variables on firms’ cost or energy consumption. We also point out that the SFA can be used not only 

to measure the level of efficiency in the use of energy, but also “rebound effects” associated with 

improvements in energy efficiency. 
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frontier models, rebound effects 
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1. Introduction 

In this paper we briefly discuss some of the issues that most researchers could address when 

using parametric (and often non-parametric) frontier models in Energy Economics. Due to 

space constraints, our review is restricted to problems that often appear using standard frontier 

models in two areas of application of stochastic frontier analysis (SFA): the estimation of 

firms’ efficiency in the electricity and gas distribution sectors, and the estimation of energy 

demand frontier models. In recent decades the electricity and the gas distribution sectors have 
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experienced regulatory reforms with the goal of improving efficiency through the use of 

incentive regulation schemes such as Price-cap and Revenue-cap regulation. Therefore, the 

estimation of the level of productive efficiency in the distribution of electricity or gas using 

SFA has become relatively popular.  

The second area of application, relatively new, is the estimation of the level of efficiency 

in the use of energy at the aggregate level. In order to reduce the environmental problems 

created by fossil-fuel-based energy systems, governments introduce policy instruments to 

promote energy efficiency improvements. These are usually examined using energy intensity 

ratios, such as the ratio of energy consumption to GDP. However, as discussed by Filippini 

and Hunt (2011), energy intensity is not a precise indicator proxy for energy efficiency 

because this measure is not related to the modern theory of production. The application of 

SFA to the analysis of energy demand not only provides policy makers with more reliable 

indicators of the level of efficiency in the use of energy in an economy, but also a new 

empirical strategy to measure the so-called “rebound effects” associated with improvements 

in energy efficiency.   

 

2. Use of SFA in benchmarking regulation 

In this section we briefly discuss common problems in the estimation of productive or cost 

efficiency in electricity distribution networks. Generally, a total cost frontier function can be 

specified as follows:
 
 

uveXPQFTC ),,,(         (1) 

where TC is the total cost for each company (i.e. TOTEX); Q is a vector of variables 

representing the outputs; P is a vector of factor prices; X is a vector of output characteristics 

and environmental variables, including area size, quality of the service or network length, and 

β are parameters to be estimated. The total cost frontier F(Q,P,X, ) reflects the minimum cost 

for each company to produce any level of output. Unexplained variations of total cost in 

equation (1) are split in two parts: while v is the conventional noise term, u is a one-sided 

error term that is interpreted as an indicator of cost inefficiency.  The most important issues to 

consider for the estimation of model (1) are: a) the choice of the dependent and independent 

variables; b) the choice of the econometric approach to be used. 
1
 

In electricity distribution, the variables considered as costs, inputs and outputs tend to vary 

significantly from one study to another (see Haney and Pollitt, 2009). For instance, some 

regulators only consider OPEX, leaving CAPEX outside the efficiency assessment. OPEX-

oriented benchmarking should control for CAPEX if both costs are not used in fixed 

proportions. However, as CAPEX is likely to be an endogenous variable, benchmarking all 

the firms’ costs (i.e. TOTEX) is often a better option.
2
  

The number of customers and amount of energy distributed are the most commonly used 

outputs in electricity distribution. Both outputs are often highly correlated as the number of 

customers is the main driver of change in energy delivered (the other is per capita demand). 

The use of energy delivered as the unique output can be justified if per capita demand does 

not vary across firms or both drivers have similar effects on distribution costs. Moreover, the 

                                                           
1
 For a detailed discussion on model specification and econometric approaches used in the specification of cost 

functions for the distribution of energy see Farsi and Filippini (2009). 
2
 It should be recalled here that some studies employing an input distance function or a DEA approach 

approximate the inputs using OPEX or CAPEX. This approach is only correct if input prices (in real terms) do 

not vary significantly across utilities. Of course, a similar bias would appear if a cost function is wrongly 

estimated without price variables. 
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increasing presence of distributed energy resources (hereafter DER) in electricity distribution 

may render these variables questionable as DER may simultaneously reduce the amount of 

energy distributed and cause additional costs. Therefore, a reduction in the outputs would 

paradoxically require an increase in the inputs. Indeed, Agrell and Bogetoft (2007), who 

include DER-related variables in their frontier models, use peak load at different voltage 

levels as outputs instead of the energy distributed.
3
  

In designing regulatory mechanisms that consider the quality dimension of the service, 

regulators are faced with the task of estimating firms’ marginal cost of quality improvements 

(MCoQ hereafter). Only Jamasb et al. (2012) and Coelli et al. (2013) have estimated MCoQ 

using respectively cost and distance functions. The first problem that should be addressed is 

that quality of service is far from being exogenously determined, as bad weather conditions 

tend to increase costs but also lead to lower quality services. Another key problem is the 

feedback between service quality and cost. Positive MCoQ are expected because quality of 

service is positively correlated with operating and investment practices to prevent power 

interruptions. However, as Jamasb et al. (2012) pointed out, the corrective costs associated 

with the replacement of faulty equipment might bias the estimated MCoQ downward. They 

also noticed that preventative and corrective costs maintain a different relationship with 

quality of service over time, and hence MCoQ can be measured from a cost derivative with 

respect to expected values of quality of service. 

An additional issue in benchmarking regulation has to do with the effect of environmental 

factors on network costs (see Yu et al., 2009; Growitsch et al., 2012). Controlling for 

environmental effects is challenging as the number of environmental variables should be kept 

down in order to avoid dimensionality problems. In this sense, the use of popular statistical 

variable reduction techniques may be useful. Orea et al. (2012) advocate using supervised 

dimension reduction methods (e.g. sliced inverse regression, SIR) that have been extensively 

applied in other scientific fields in recent years.  

From the econometric point of view, the estimation of electricity cost functions is mostly 

carried out using panel data. Several panel data estimators have been proposed and used for 

this purpose. Of particular interest are the clustering and non-clustering methods recently 

developed to deal with unobserved heterogeneity across firms.
4
 The non-clustering approach 

includes the panel data frontier models introduced by Greene (2005), where unobserved 

heterogeneity is captured through a set of firm-specific intercepts (more details can be found 

in Section 3). The clustering approach can be viewed as a two-stage procedure where the 

original sample is first split into a number of mutually exclusive groups (classes), and then 

separate efficiency analyses are carried out for each class/sub-sample. Thus, the clustering 

approach allows the estimation of different technological characteristics for firms belonging 

to different groups. In this sense,
 
Agrell et al. (2013) advocate using the so-called latent class 

model to split the sample as this approach is specifically designed to cluster firms by 

searching for differences in production or cost parameters. Moreover, the simulation analyses 

carried out by Llorca et al. (2014) show that the latent class approach outperforms other 

somewhat more arbitrarily and less robust procedures of splitting a sample of observations, 

such as cluster analysis.
5
 

 

                                                           
3
 Cossent (2013) also points out that it is unclear how to compute the number of consumers in a situation where 

DER can be connected under net-metering schemes. 
4
 Some studies argue that discrepancies in efficiency estimates between different approaches can be due to the 

presence of unobserved heterogeneity. See Farsi and Filippini (2004) and Farsi et al. (2006) for a discussion of 

this issue. 
5
 Dai and Kuosmanen (2013) pointed out that this approach is also becoming quite popular because it applies 

well to the conventional DEA as well as to the StoNED method. See, for instance, Po et al. (2009). 
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3. Use of SFA in energy demand models 

In this second part of the paper, we summarize a new approach proposed by Filippini and 

Hunt (2011) on the empirical measurement of the “underlying energy efficiency”. This 

approach, based on the stochastic frontier analysis, treats energy as a production factor used in 

combination with other inputs to produce energy services.
6
 The analysis of the level of 

“underlying energy efficiency” is generally based on the econometric estimation of an 

aggregate energy demand frontier function that can be viewed as the reduced-form model of 

an underlying structural model based on a household utility optimizing problem.
7
 This energy 

demand frontier function can be estimated for the whole economy or just for a sector, such as 

the residential sector. Generally, an aggregate energy demand frontier function is specified as 

follows:
 
 

uvetXPYfE ),,,,(         (2) 

where E is the aggregate energy consumption; Y is income; P is the real energy price; β are 

parameters to be estimated; X is a vector of variables influencing demand for energy, 

including climate, characteristics of the household, structure of the economy, etc.; and t is a 

time trend capturing both ‘exogenous’ technical progress and other common factors.
8
 

Unexplained variations of energy demand are again captured by two random terms, v and u. 

Whereas the noise term v in (2) is assumed to be normally distributed, the non-negative 

random term u is generally assumed to follow a half-normal distribution. The energy demand 

frontier  f (Y,P,X,t, ) reflects the minimum amount of energy necessary to produce any given 

level of energy service (Filippini and Hunt 2011, 2013). Therefore, the positive deviations 

from the energy demand frontier function captured by u can be interpreted as inefficiency in 

the use of input energy.
 
 

Filippini and Hunt (2011, 2012) proposed to use panel data and a relatively simple log-log 

functional form. Regardless of the specification of the energy demand frontier, equation (2) 

implicitly assumes that responses to changes in both income and energy prices do not depend 

on energy efficiency. This implies that the energy demand function is separable. If this 

separability condition is not satisfied but still we impose it, we could bias the estimated 

elasticities and energy efficiency scores. In an energy demand setting, this seems to be a quite 

restrictive assumption because more energy-inefficient consumers should have more elastic 

energy demands (as they are more penalized when the price of energy increases).
9
  

The estimation of the stochastic energy demand frontier function (2) can be performed 

using cross-sectional data or panel data. The use of panel data stochastic frontier models is 

important because of the presence of unobserved heterogeneity. The estimation of (2) can be 

therefore carried out using a number of different SFA model specifications such as the pooled 

model, the random effects model (REM), the true fixed effects model (TFEM), and the true 

random effects model (TREM).
10

 The TREM and the TFEM are non-clustering methods to 

control for unobserved variables and extend the original pooled model to panel data by adding 

an individual effect. Therefore, these models consider two stochastic terms for unobserved 

heterogeneity, one for time-variant unobserved factors (captured by the noise term) and one 

                                                           
6
 Some studies have been published on the measurement of the energy efficiency using a Data Envelopment 

Approach (DEA). See, for example, Hu and Wang (2006) and Wei et al. (2009). 
7
 See, for instance, Flaig (1990) and Alberini and Filippini (2011). 

8
 As suggested in Filippini and Hunt (2012), time dummies can also be used to capture a common Underling 

Energy Demand Trend (UEDT).  
9
 Consumers’ stickiness or bounded rationality might yield however less elastic demands. 

10
 For a general presentation of these models, see Greene (2008) and Farsi and Filippini (2009). 
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for the unit-specific time-invariant socioeconomic and environmental characteristics (captured 

by the individual effects).
 11

 

Orea et al. (2014) bring attention to the fact that the above energy demand frontier 

approach is closely connected to the measurement of the so-called “rebound effect” associated 

with improvements in energy efficiency.
12

 The rebound effect refers to the reduction in the 

unit cost of energy services (e.g. heating, lighting and refrigeration) when the energy system 

becomes more efficient. This price reduction can generate an increase in the consumption of 

the energy service that might offset the expected savings in energy consumption provided by 

an energy efficiency improvement. 

In this sense, these authors point out that as equation (2) includes an energy inefficiency 

term, the elasticity of demand for energy with respect to changes in this term (i.e. 

u
E

E
ln )  provides a direct measure of the rebound effect. The actual saving in energy 

consumption will only be equal to the predicted saving from engineering calculations when 

1E , and hence there is no rebound effect.
13

 The rebound effect would be positive if 

actual savings in energy consumption are less than expected, i.e. E1 . However, since E    

in (2) is equal to -1, the traditional SFA energy demand frontier model implicitly imposes a 

zero rebound effect, which contradicts most of the available empirical evidence.  

Orea et al. (2014) relax the zero-rebound effect assumption and suggest estimating the 

following energy demand frontier model: 

uzESgvtXPYfE )],([),,,,(lnln       (3) 

where g[.] is simply the rebound effect, and γ are new parameters to be estimated. Several 

interesting remarks could be made regarding the measurement of rebound effects with a SFA 

model. First, the rebound effect function g depends on the demand of energy services ES, 

which like the energy inefficiency level is unobserved. This latent variable is approximated by 

z, a set of energy services determinants (income and price variables). Second, the above 

model can be viewed as a traditional heteroscedastic SFA model in production economics that 

satisfies the traditional scaling property.
14

 However, while the (scaling) function g is 

interpreted in the latter literature as a portion of total estimated inefficiency, Orea et al. (2014) 

treat the (rebound effect) function g as part of the deterministic frontier. Third, equation (3) 

precludes the existence of negative rebound effects or ‘backfire’ outcomes as g≥0 should be 

imposed in order to distinguish inefficiency from noise. Finally, the traditional exponential 

modelling of g might yield ‘over conservation’ rebounds effects for some observations (see 

Saunders, 2008). One strategy to deal with this somewhat counterintuitive outcome is using 

an index-type function that lies between zero and one (see, for instance, the scaling function 

proposed by Kumbhakar, 1990).   

 

 

 

                                                           
11

 As discussed by Farsi et al. (2005), the REM and the TREM can suffer from the “unobserved variables bias”. 

In order to solve the unobserved heterogeneity bias in the estimation of stochastic frontier models, these authors 

proposed to use the Mundlak (1978) adjustment. This adjustment is based on an auxiliary equation with the 

group-means of the explanatory variables. 
12

 For a detailed summary of this literature, see Sorrell and Dimitropoulos (2008). 
13

 Here we use the definition provided by Saunders (2000). Following this author, the rebound effect can be 

measured as R=1+εE. 
14

 See Álvarez et al. (2006) for a review of the models that incorporate this property in the literature on frontier 

production functions. 
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4. Further issues and challenges for future research 

In the preceding sections we have discussed a selection of empirical issues that often appear 

when standard SFA models are used in both benchmarking regulation and energy demand 

settings. Obviously, there are other interesting challenges facing applied researchers in 

benchmarking regulation such as the estimation of semi-parametric stochastic frontier models, 

the estimation of transient and persistent efficiency, and the estimation of dynamic frontier 

models. Further research is also desirable to find potential feedbacks between frontier models 

and engineering-oriented models, such as reference network models and norm models. 

Regarding the estimation of energy consumption, we could also consider issues such as 

measurement errors in prices and the identification of asymmetric price effects, the control for 

unobserved heterogeneity using panel data estimators when (most of the) variables change 

slowly over time and the estimation of frontier models with endogenous variables. Finally, 

additional research is also needed in order to find flexible (but tractable) rebound-effect 

functions that are able to depict the full range of rebound values (including backfire 

outcomes). 
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