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Abstract

Statistical space-time forecasting requires su#fitiy large time series data to ensure high quality
predictions. The dominance of temporal dependemesnipirical space-time data emphasizes the
importance of a lengthy time sequence. Howevelipnad) space-time data often have a relative
small temporal sample size, increasing chancesréiggbnal forecasts might result in unreliable

predictions. This paper proposes a method to ingregional forecasts by incorporating spatial

autocorrelation in a generalized linear mixed mddehework coupled with eigenvector spatial

filtering. This methodology is illustrated with a@pplication to regional population forecasts for

South Korea.

Keywords eigenvector spatial filter, population, South &ay space-time forecasting, spatial
autocorrelation
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1. Introduction

Consider a geographic landscape comprisiregeal units (e.g., counties) amdooints in time.
This is a panel data structure (Baltagi, 2013).cBgane forecasting of population counts is an
important problem that can be solved statisticalith a sufficiently large dataset, or with
population projection matrices coupled with a segeeofT-1 n-by-n inter-areal unit migration
flows data. Because space-time statistical forscestd to be dominated by time dependence
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(Griffith, 2013), T needs to be relatively large. Meanwhile, @asincreases, geographic
heterogeneity compromises the simplicity of a sgane statistical forecast. In contrast,
collecting areal unit migration data is an onerand costly task that dissuades the construction
of population projection matrix forecasts.

WhenT is relatively small (e.g., << 50), and pointsime are relatively close together (e.g., 1
year apart), estimated time series statistical cistng models tend to be unreliable, and
resources rarely are spent to repeatedly collegtation data over such a short time horizon. In
this context, recognizing that spatial autocorretais a manifestation of the inertia—i.e., the
resistance to change—in a space-time geographisdape arising from temporal dependence,
spatially structured and spatially unstructureddman effects can be estimated separately and
then used to make forecasts. The purpose of thperpa to describe this advance in regional
forecasting. This furnishes a supplemental appraagtanel data analysis for largesmall T,
and unobserved heterogeneity.

2. Methods

The set of methods employed for data analysis pagpdiere includes principal components
analysis (PCA), Box-Jenkins time series modellchhiques, eigenvector spatial filtering, and
generalized linear mixed model techniques. To adjus variation in the size of areal units,
population counts are converted to densities.

A sequence of annual population density maps fgivan geographic landscape tends to
display extremely large positive Pearson produaterat correlation coefficients. PCA furnishes
one multivariate statistical method for confirmitigjs feature of a space-time dataset, and
quantifying its magnitude. In this context of hightorrelated maps, when the time series is
relatively short (e.g.T = 12), an estimated first-order autoregressive matar, denoted by
AR(1), tends to be near the upper limit of its fekes parameter space (i.e., close to 1).
Meanwhile, as increases, the variability of tmeAR(1) values tends to increase, and more and
more areal units tend not to be characterized bytlerage of these AR(1) values.

Eigenvector spatial filtering (see Chun and Ghifi2013) employs selected eigenvectors
extracted from am-by-n spatial weights matrixC, which articulates the correlation structure for
geographic locations across space, as synthetiy mariables that can be used to control for
residual spatial autocorrelation by filtering ittaf the model residuals and transferring it to the
mean response term. These control variables igeratifd isolate the stochastic spatial
dependencies among a set of georeferenced obs&satiesulting in independence being
mimicked, and thus allowing model estimation to geed as though the observations are
independent. The most popular implementation oferergctor spatial filtering uses an
eigenfunction decomposition of the matrix versiéhe Moran Coefficient (MC) numerator

(I —11/n)C(l - 12'/n) 1)

where 1 is an n-by-1 vector of ones, and denotes the matrix transpose operator. This
decomposition generates eigenvectors, safg = (Ei, Ez, Es, ..., Ep), and their associateal
eigenvalues, saly = (A1, A2, Az, ..., An), Where the subscript represents a descendingiogdey
eigenvalue value. These eigenvalues enable calmulat the MC for their correspondingby-1

eigenvectors: MG 1T—r(‘:1[lj , forEj, =1, 2, ..., n.
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A generalized linear mixed model (GLMM) is a stttigl model built upon both normal and
non-normal probability models, with a mean respongsose relationship with a linear
combination of covariates and a random effects teyndefined by a link function, say g
(McCulloch, Searle, and Neuhaus, 2008). For sintglithese random effects frequently are
assumed to conform to a zero mean normal distdbutlThey often are specified with both
spatially structured and unstructured componentgyémreferenced data. L¥t be a response
variable,X; be a 1-by4¢+1) vector ofp covariates and a 1 (for the intercept term), Znte a
design matrix (e.g., defining repeated measureaitir time) for observation Then

E(Y,) =w, :g_l(Xin +Zi"{)=g_l(Xin +EBe +& +W,), (2

where E denotes the calculus of expectation opergigris a p+1)-by-1 vector of covariate
regression coefficients (including the interceptne g. is a k-by-1 vector of selected
eigenvector regression coefficients, wijip, being a spatially structured random effects term,
¢ is a spatially unstructured random effects ternd W/; is the sum of >0 offset variables
(which, by definition, have coefficients of 1).

3. Data

The foundational space-time dataset is for 12 ye&nesident population counts (1997-2008)
across South Korea’s 230 Si-Gun-Gu (which are amntd counties). These population counts are
available from a South Korean government databasgaiming the residential locations of
people in South Korea. This resident registratisncompulsory in the country, and address
changes by residents must be reported to the gaati Jeju lisland is partitioned into two Si-
Gun-Gu that are not linked to the mainland in teegyaphic weights matrix. Figure 1la portrays
aggregate annual population growth for South Kaasaa whole across the 1992-2013 time
horizon, together with the Korean quinquennial asngopulation counts since 1925. The two
overlapping trajectories are nearly parallel, andghly linearly related to time (Figure 1l1a).
Because the resident population includes people tetmporarily live in other counties due to,
for example, their jobs or being students, residpapulation is slightly larger than its
corresponding census population counts.

! Three different national population statistics aveilable in South Korea: (1) resident populafimm the Ministry

of Security and Public Administration, (2) censwpplation from Statistics Korea, the Korean natlcstatistical
office, and (3) population projections from Statist Korea. These data can be accessed at
http://kosis.kr/statisticsList/statisticsList_01tjsp.
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Figure 1. Statistical characteristics of the sr-time series
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Top left (a): the aggregate South Korea populatiore series: gray denotes quinquennial census spfeck
asterisks denote®sident populatic counts, and solid black circles denote the foundayears used to estimate
space-time forecasting model.

Top right (b): the geographic distribution of thest principal component scores (MC = 0.76297);recmlues are
directly related to graystadarkness

Bottom left (c): scatter plot and correlation mafior the 12 maps

Bottom right (d): the frequency distribution of tAR(1) coefficients, with a superimposed beta thstion curve
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4. Results

The population densities (population/area) wergesiid to a Box-Cox power transformation—
namely, 1/(density-1.78}*—so that they better conform to a bell-shaped guavarocedure that
moderates impacts of outliérd he individual year translation and exponent peaters display a
time trend (Table 1). A PCA of the 12 transformexpylation density maps produces a single
component accounting for 99.85% of the variancia@se maps. In other words, the 12 maps are
highly multicollinear, and are nearly identical their map patterns (Figure 1c). Figure 1b
portrays the composite map pattern for these toamsfd population densities.

Table 1. Selected estimation results for the imtlial population maps

Box-Cox power transformation Regression includimg tandom effects term
vear Translation parameter exponent Dispersion a b Pseudo-R
parameter

1997 -1.70 -0.15 0.0134 -5.7201 1.0247 0.9946
1998 -1.73 -0.14 0.0099 -4.2765 1.0147 0.9967
1999 -1.74 -0.14 0.0063 -2.8525 1.0103 0.9981
2000 -1.75 -0.13 0.0035 -2.2257 1.0127 0.9991
2001 -1.74 -0.12 0.0016 -0.7317 1.0071 0.9993
2002 -1.73 -0.11 0.0005 0.3674 1.0018 0.9995
2003 -1.73 -0.11 0.0007 1.2073 0.9970 0.9996
2004 -1.79 -0.10 0.0015 1.6840 0.9939 0.9991
2005 -1.83 -0.09 0.0030 2.2085 0.9894 0.9987
2006 -1.83 -0.08 0.0052 2.6496 0.9858 0.9981
2007 -1.81 -0.08 0.0077 3.2487 0.9838 0.9976
2008 -1.79 -0.08 0.0122 4.4411 0.9788 0.9967
overall -1.76 -0.11 0.0060 0.0000 1.0000 0.9979

Next, AR(1) models were estimated for each of the 230 [ = 12) time series of these
transformed values (Figure 1d). Over 50% of theéakeorrelation parameter estimates exceed
0.95 in value. But some of the values are as sasatbughly 0.16. Moreover, the distribution of
the values conforms well to a Beta random variabte parameters 8.1 and 0.9. These properties
coupled with only 12 points in time are antithettimaestablishing sound time series forecasting.

Consequently, Eq. 2 was estimated, with the resgpeasable population being a count, and
the covariates being a log-area offset variabde, (its coefficient was set to 1)—this specificatio
is equivalent to an untransformed population dgndéscribed by a non-normal probability
model—and the intercept term. The link function gswdefined in terms of a negative binomial
(i.e., Poisson with a gamma distributed mean) riiyamodel. This specification accounts for
nearly all of the variability in population densigcross South Korea (Table 1). The random
effects term has a mean of -0.0060, but deviata® fnormality according to its Shapiro-Wilk
diagnostic statistic. Its spatially structured cament (Figure 2a) is an eigenvector spatial filter
(ESF) constructed with 25 vectors that account 86 of its variability. Its spatially
unstructured component (Figure 2b) still has a n@#af.0060, but conforms closely to a normal

2 The Shapiro-Wilk normality diagnostic statisticeieases from 0.67 to 0.95, which is dramaticdthger to 1. Its
standard deviation across the years decreases 01666 to 0.001. Roughly 8.7% of the original data de
classified as large outliers. The Box-Cox transfation alters the measurement scale in such a watyothtliers
shrink by about 42%, through to small values béifiated by 151%. The outcome is frequency distidms that
more closely mimic normal curves.
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distribution (its Shapiro-Wilk statistic probabyliis 0.2465); this term represents heterogeneity
across the South Korean geographic landscape. Timebeidual spatially structured and
unstructured random effects terms are the sameviery point in time, which accounts for the
strong pairwise correlations among the twelve n{&psure 1c). Respecifying the random effects
term with a space-time filter (Griffith, 2012) failto change these results, an outcome that is
consistent with the preceding PCA and AR(1) finding

Figure 2. The random effects terms

Left (a): the spatially structured random effe®d&C(= 0.98259)
Right (b): the spatially unstructured fandom efég@C = 0.04931)

o8

Areal unit values are directly proportional to ggegle darkness.

Griffith and Paelinck (2009) discuss the use of Efpr space-time forecasting purposes. The
bivariate regression coefficients appearing in €ablsuggest that although the quality of these
forecasts decreases through time, which is antmipane should expect to get reasonably good
forecasts for at least three or four future ye&igure 3a). One reason these forecasts do not
extend further into the future is because the ramdtiects term best fits the average point of the
series, which tends to be at its midpoint, resglim a quadratic relationship between time and
the R values. Nevertheless, although acknowledging ghtslime series trend in the bivariate
GLMM regression coefficients for the intercept (dExsing from 4.1855 to 4.1633) and the ESF
aggregate coefficient (increasing from 0.9848 @l 26), short range population forecasts can be
achieved with the pooled estimated constant térh*&modified by deviations from this mean
geographically distributing the population acrose tountry according to areal unit size, the
spatial autocorrelation pattern captured by the ,E8¥ local heterogeneity, all of which are
guantities varying across locations but not timee parameter time trends (Figure 3b) suggest
that the constant term becomes less important, easethe spatial autocorrelation and local
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heterogeneity terms become more important, wittptssing of time. Therefore, forecasts can be
constructed for time t+k by rescaling the estimatediel results as follows:

230

Z Pi,t+k
=1

'E’mk = Area exp(4.1725 + ESF gi) - i ’ 3)
> Aregexp(4.1725 ESF +&;)

i=1

where B is the population of areal unit i are time t, Arsathe area of areal unit i, and E&~

230
the ESF value for areal unit i. Eq. 3 requirestaltpopulation figure, # = mek , which can

i=1
be a short range aggregate forecast. Mean squan@d(BISE) calculations based upon Eq. 3
again emphasize that the estimated spatially stredtand spatially unstructured random effects
terms best describe the midpoint of the space-terees (Figure 4a), and hence the equation’s
restriction to producing only short range forecasitich becomes a necessary tool when time
series are very short. This conclusion does nohghaby using the year-specific bivariate
GLMM coefficients because the random effects teamesestimated with the entire foundational
time series. For example, the 2008 year-speciBalte yield an increase in the MSE of 12.4%.
The best case scenario is for 2006, for which ttf&EMIecreases, but by only 1.1%. Spatially
structured random effects can be estimated withdirme series, although a single-year estimate
may contain some biased; but the spatially unstradt random effects term, which here
accounts for roughly 20% of the variability in tteéal random effects term, cannot.

Figure 3. Time series for model goodness-of-fitistias and parameter estimates for populationitdeas

Left (a): forecasted Rvalues with prediction intervals.

Right (b): individual map bivariate regression dméénts for the random effect terms; black denahes
coefficient for the spatially structured term, agrdy denotes the coefficient for the spatially wnstured
term.
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Figure 4. Time series for model goodness-of-fit podulation density forecast prediction error

Left (a). The MSE for the population maps basedupe forecast Eq. 3
Right (b). Scatter plot and correlation matrix floe spatial prediction error and five forecast emaps
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The annual space-time results for 2009-2013 canartmyzed to assess the quality of
population count estimates presented by Eq. 3 astinwith data for 1997-2008. A simple Box-
Jenkins time series forecast based upon the atotadpopulation counts for South Korea during
1992-2008 (Figure l1a) yields

P, =(1-0.85401) 344381.2+ (1- 0.85401)P, + 0.85401P, , (4)

where RPdenotes the population of South Korea at timefirsadifferencing was done, the first-
order autoregressive parameter estimate is 0.8&illthe mean of the differenced series (with
only 17 points in time) is 344381.2. Residual diagjits suggest that only trace serial correlation
remains. Table 2 reports the forecasts for theesyuent five years, which are reasonably good
given the shortness of the time series. The ps&id@lues are better than expected (Figure 3a),
and are identical for the observed and forecastause the forecasts are simply a rescaling of the
predicted values corresponding to the observedtso@n average, the MSEs for the forecasts
are more than 20% greater than their correspondigs for the predicted values. This reflects
the sizeable prediction error for the forecaste8712008 total population: the variance of the
space-time distribution of values has an error teynthe forecasts multiplied by an error term
for the predicted values; this latter error compune constant over time, whereas this former
error component increases across a forecast horkzgare 5a presents the 2009 space-time
population counts forecast; Figure 5b portraysgiegraphic distribution of its spatial prediction
error. This result can be extended to space-timecésts by the mathematical statistics theorem
(Goodman, 1962) about the variance of the prodttivo independent random variables (i.e.,
the time series forecasts here are independehedfatial forecasts), which equals
6202+ 202+ 262
ZaosTusiT“TsA, (5)
D" Areaexp(4.1725 ESF +¢;)

i=1

230 R
where the denominatoZAreqexp(4.1725 ESE+¢&,) = 48,212,412 and can be assumed fixed
i=1
here because it does not change from forecastrézdst,c; denotes the variance of the time
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series forecast (from Table 3), denotes the forecasted time series value (ieméan; from
Table 2),cs§i denotes the spatial variance for areal unit ittaged in Figure 5b), and, denotes

the spatial mean for areal unit i (portrayed inufgg5a). The time series forecasting uncertainty
approximately multiplies each of the areal unitdicBon standard errors by the following
factors:

year 2009 2010 2011 2012 2013
factor 1.05013 1.11160 1.21758 1.36293 1.53854

In other words, the map in Figure 5b essentialtgins its geographic pattern, but with rescaled
values (Figure 4b).

Table 2. Selected summary statistics for the fatsca

Total population forecast Observed total Forecast total
Year Forecast Standard error IN95% ClI  *R MSE R MSE
2009 49822455 60988 Yes 0.9956 815827242 0.9956 1032494759
2010 50113636 128471 No 0.9950 1034744617 0.9950 1310487901
2011 50412584 203292 Yes 0.9938 1287201916 0.9938 1566867185
2012 50718165 282071 Yes 0.9932 1550314549 0.9932 1844516609
2013 51029410 362684 Yes 0.9923 1833486681 0.9923 2150340770

Figure 5. The geographic distribution of 2009 sp@me-based population count forecasts and theiedainty

5a. The space-time population forecast for 2009
5b. The spatial prediction standard error
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5. Concluding remarks

This paper summarizes an advance in short run gpaeeegional population forecasting when
existing time series contain relatively few obséinigs and points in time are close together. This
advance exploits spatial autocorrelation as weltaaslom effects in a GLMM framework to
geographically distribute aggregate population aueal units of a geographic landscape. The
spatial autocorrelation component is approximatéd an ESF, which captures the complex map
pattern portraying spatial dependence that is faterpopulation counts, and preserves it in
regional forecasts of population. As such, thisgoapffers from Griffith and Paelinck (2009) in
four ways: (1) it treats a substantially larger tn@mof areal units (230 rather than 11); (2) it
evaluates forecasts with observed data (ratherdbgyut from a spatial econometric model); (3)
it derives prediction error maps to accompany pajuh forecast maps; and, (4) it analyzes
South Korean population counts (rather than Belg@mmomic value added figures).

One surprising outcome from the analysis summaitieed is that the quality of the regional
forecasts is better than expected, given diagmostich as Figure 3. A second is that the two
time components in expression (5) do not dominageprediction error maps. A third is that
although time dependence almost always dominatasatpdependence in practice, results
summarized here demonstrate that such temporalndmice can materialize through inertia in
spatial dependence as captured by a spatiallytsteccrandom effects term.

Empirical evaluations of the short run populatiametasts indicate that using an ESF to
describe spatially structured random effects calplgh a spatially unstructured random effects
term furnishes good annual county-level geograpgsolution predictions for several years into
the future. Similar evaluations need to be conaludbte other countries and other geographic
resolutions.

Acknowledgement$Ve thank Monghyeon Lee and Hyeongmo Koo for thesistance in collecting the
South Korea population dataset.
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