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Abstract 

Statistical space-time forecasting requires sufficiently large time series data to ensure high quality 
predictions. The dominance of temporal dependence in empirical space-time data emphasizes the 
importance of a lengthy time sequence. However, regional space-time data often have a relative 
small temporal sample size, increasing chances that regional forecasts might result in unreliable 
predictions. This paper proposes a method to improve regional forecasts by incorporating spatial 
autocorrelation in a generalized linear mixed model framework coupled with eigenvector spatial 
filtering. This methodology is illustrated with an application to regional population forecasts for 
South Korea. 
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autocorrelation 

JEL Classification Codes: C21, P23, R23 

 
1. Introduction 

Consider a geographic landscape comprising n areal units (e.g., counties) and T points in time. 
This is a panel data structure (Baltagi, 2013). Space-time forecasting of population counts is an 
important problem that can be solved statistically with a sufficiently large dataset, or with 
population projection matrices coupled with a sequence of T-1 n-by-n inter-areal unit migration 
flows data. Because space-time statistical forecasts tend to be dominated by time dependence 
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(Griffith, 2013), T needs to be relatively large. Meanwhile, as n increases, geographic 
heterogeneity compromises the simplicity of a space-time statistical forecast. In contrast, 
collecting areal unit migration data is an onerous and costly task that dissuades the construction 
of population projection matrix forecasts. 

When T is relatively small (e.g., << 50), and points in time are relatively close together (e.g., 1 
year apart), estimated time series statistical forecasting models tend to be unreliable, and 
resources rarely are spent to repeatedly collect migration data over such a short time horizon. In 
this context, recognizing that spatial autocorrelation is a manifestation of the inertia—i.e., the 
resistance to change—in a space-time geographic landscape arising from temporal dependence, 
spatially structured and spatially unstructured random effects can be estimated separately and 
then used to make forecasts. The purpose of this paper is to describe this advance in regional 
forecasting. This furnishes a supplemental approach to panel data analysis for large n, small T, 
and unobserved heterogeneity. 
 
 
2. Methods 

The set of methods employed for data analysis purposes here includes principal components 
analysis (PCA), Box-Jenkins time series modelling techniques, eigenvector spatial filtering, and 
generalized linear mixed model techniques. To adjust for variation in the size of areal units, 
population counts are converted to densities. 

A sequence of annual population density maps for a given geographic landscape tends to 
display extremely large positive Pearson product moment correlation coefficients. PCA furnishes 
one multivariate statistical method for confirming this feature of a space-time dataset, and 
quantifying its magnitude. In this context of highly correlated maps, when the time series is 
relatively short (e.g., T = 12), an estimated first-order autoregressive parameter, denoted by 
AR(1), tends to be near the upper limit of its feasible parameter space (i.e., close to 1). 
Meanwhile, as n increases, the variability of the n AR(1) values tends to increase, and more and 
more areal units tend not to be characterized by the average of these AR(1) values. 

Eigenvector spatial filtering (see Chun and Griffith, 2013) employs selected eigenvectors 
extracted from an n-by-n spatial weights matrix C, which articulates the correlation structure for 
geographic locations across space, as synthetic proxy variables that can be used to control for 
residual spatial autocorrelation by filtering it out of the model residuals and transferring it to the 
mean response term. These control variables identify and isolate the stochastic spatial 
dependencies among a set of georeferenced observations, resulting in independence being 
mimicked, and thus allowing model estimation to proceed as though the observations are 
independent. The most popular implementation of eigenvector spatial filtering uses an 
eigenfunction decomposition of the matrix version of the Moran Coefficient (MC) numerator  
 

(I  – 11′/n)C(I  - 11′/n) (1) 
 
where 1 is an n-by-1 vector of ones, and ′ denotes the matrix transpose operator. This 
decomposition generates n eigenvectors, say E = (E1, E2, E3, …, En), and their associated n 
eigenvalues, say λ = (λ1, λ2, λ3, …, λn), where the subscript represents a descending ordering by 
eigenvalue value. These eigenvalues enable calculation of the MC for their corresponding n-by-1 

eigenvectors: MCj = jT
λ

n ⋅
C11

, for Ej, j=1, 2, …, n. 
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A generalized linear mixed model (GLMM) is a statistical model built upon both normal and 
non-normal probability models, with a mean response whose relationship with a linear 
combination of covariates and a random effects term is defined by a link function, say g 
(McCulloch, Searle, and Neuhaus, 2008). For simplicity, these random effects frequently are 
assumed to conform to a zero mean normal distribution. They often are specified with both 
spatially structured and unstructured components for georeferenced data. Let Yi be a response 
variable, X i be a 1-by-(p+1) vector of p covariates and a 1 (for the intercept term), and Z i be a 
design matrix (e.g., defining repeated measures through time) for observation i. Then 

 
)ξ(g)(gµ)E(Y iiEik,Xi

1
iXi

1
ii WβEβXγZβX +++=+== −− , (2) 

 
where E denotes the calculus of expectation operator, Xβ  is a (p+1)-by-1 vector of covariate 
regression coefficients (including the intercept term), Eβ  is a k-by-1 vector of selected 
eigenvector regression coefficients, with Xik, βE  being a spatially structured random effects term, 

ξ  is a spatially unstructured random effects term, and W i is the sum of q>0 offset variables 
(which, by definition, have coefficients of 1). 
 
 
3. Data 

The foundational space-time dataset is for 12 years of resident population counts (1997-2008) 
across South Korea’s 230 Si-Gun-Gu (which are similar to counties). These population counts are 
available from a South Korean government database containing the residential locations of 
people in South Korea. This resident registration is compulsory in the country, and address 
changes by residents must be reported to the government.1 Jeju Iisland is partitioned into two Si-
Gun-Gu that are not linked to the mainland in the geographic weights matrix. Figure 1a portrays 
aggregate annual population growth for South Korea as a whole across the 1992-2013 time 
horizon, together with the Korean quinquennial census population counts since 1925. The two 
overlapping trajectories are nearly parallel, and roughly linearly related to time (Figure 1a). 
Because the resident population includes people who temporarily live in other counties due to, 
for example, their jobs or being students, resident population is slightly larger than its 
corresponding census population counts.  
 
 
 
 
 
 
 
 
 
 
                                                           
1 Three different national population statistics are available in South Korea: (1) resident population from the Ministry 
of Security and Public Administration, (2) census population from Statistics Korea, the Korean national statistical 
office, and (3) population projections from Statistics Korea. These data can be accessed at 
http://kosis.kr/statisticsList/statisticsList_01List.jsp.  
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Figure 1. Statistical characteristics of the space
 

Top left (a): the aggregate South Korea population time series: gray denotes quinquennial census counts, black 
asterisks denotes resident population
space-time forecasting model.  
Top right (b): the geographic distribution of the first principal component scores (MC = 0.76297); score value
directly related to grayscale darkness. 
Bottom left (c): scatter plot and correlation matrix for the 12 maps. 
Bottom right (d): the frequency distribution of the AR(1) coefficients, with a superimposed beta distribution curve.
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Figure 1. Statistical characteristics of the space-time series 

 

 

Top left (a): the aggregate South Korea population time series: gray denotes quinquennial census counts, black 
resident population counts, and solid black circles denote the foundation years used to estimate the 

Top right (b): the geographic distribution of the first principal component scores (MC = 0.76297); score value
le darkness.  

Bottom left (c): scatter plot and correlation matrix for the 12 maps.  
Bottom right (d): the frequency distribution of the AR(1) coefficients, with a superimposed beta distribution curve.
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Top left (a): the aggregate South Korea population time series: gray denotes quinquennial census counts, black 
counts, and solid black circles denote the foundation years used to estimate the 

Top right (b): the geographic distribution of the first principal component scores (MC = 0.76297); score values are 

Bottom right (d): the frequency distribution of the AR(1) coefficients, with a superimposed beta distribution curve. 
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4. Results 

The population densities (population/area) were subjected to a Box-Cox power transformation—
namely, 1/(density-1.76)0.11—so that they better conform to a bell-shaped curve, a procedure that 
moderates impacts of outliers2. The individual year translation and exponent parameters display a 
time trend (Table 1). A PCA of the 12 transformed population density maps produces a single 
component accounting for 99.85% of the variance in these maps. In other words, the 12 maps are 
highly multicollinear, and are nearly identical in their map patterns (Figure 1c). Figure 1b 
portrays the composite map pattern for these transformed population densities. 
 
Table 1. Selected estimation results for the individual population maps 
 

Year 
Box-Cox power transformation Regression including the random effects term 

Translation parameter exponent 
Dispersion 
parameter 

a b Pseudo-R2 

1997 -1.70 -0.15 0.0134 -5.7201 1.0247 0.9946 
1998 -1.73 -0.14 0.0099 -4.2765 1.0147 0.9967 
1999 -1.74 -0.14 0.0063 -2.8525 1.0103 0.9981 
2000 -1.75 -0.13 0.0035 -2.2257 1.0127 0.9991 
2001 -1.74 -0.12 0.0016 -0.7317 1.0071 0.9993 
2002 -1.73 -0.11 0.0005   0.3674 1.0018 0.9995 
2003 -1.73 -0.11 0.0007   1.2073 0.9970 0.9996 

2004 -1.79 -0.10 0.0015   1.6840 0.9939 0.9991 
2005 -1.83 -0.09 0.0030   2.2085 0.9894 0.9987 
2006 -1.83 -0.08 0.0052   2.6496 0.9858 0.9981 
2007 -1.81 -0.08 0.0077   3.2487 0.9838 0.9976 
2008 -1.79 -0.08 0.0122   4.4411 0.9788 0.9967 
overall -1.76 -0.11 0.0060   0.0000 1.0000 0.9979 

 
Next, AR(1) models were estimated for each of the n = 230 (T = 12) time series of these 

transformed values (Figure 1d). Over 50% of the serial correlation parameter estimates exceed 
0.95 in value. But some of the values are as small as roughly 0.16. Moreover, the distribution of 
the values conforms well to a Beta random variable with parameters 8.1 and 0.9. These properties 
coupled with only 12 points in time are antithetical to establishing sound time series forecasting. 

Consequently, Eq. 2 was estimated, with the response variable population being a count, and 
the covariates being a log-area offset variable (i.e., its coefficient was set to 1)—this specification 
is equivalent to an untransformed population density described by a non-normal probability 
model—and the intercept term. The link function g was defined in terms of a negative binomial 
(i.e., Poisson with a gamma distributed mean) probability model. This specification accounts for 
nearly all of the variability in population density across South Korea (Table 1). The random 
effects term has a mean of -0.0060, but deviates from normality according to its Shapiro-Wilk 
diagnostic statistic. Its spatially structured component (Figure 2a) is an eigenvector spatial filter 
(ESF) constructed with 25 vectors that account for 80% of its variability. Its spatially 
unstructured component (Figure 2b) still has a mean of -0.0060, but conforms closely to a normal 

                                                           
2 The Shapiro-Wilk normality diagnostic statistics increases from 0.67 to 0.95, which is dramatically closer to 1. Its 
standard deviation across the years decreases from 0.006 to 0.001. Roughly 8.7% of the original data can be 
classified as large outliers. The Box-Cox transformation alters the measurement scale in such a way that outliers 
shrink by about 42%, through to small values being inflated by 151%. The outcome is frequency distributions that 
more closely mimic normal curves. 
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distribution (its Shapiro-Wilk statistic probability is 0.2465); this term represents heterogeneity 
across the South Korean geographic landscape. These individual spatially structured and 
unstructured random effects terms are the same for every point in time, which accounts for the 
strong pairwise correlations among the twelve maps (Figure 1c). Respecifying the random effects 
term with a space-time filter (Griffith, 2012) fails to change these results, an outcome that is 
consistent with the preceding PCA and AR(1) findings. 
 
Figure 2. The random effects terms 

Left (a): the spatially structured random effects (MC = 0.98259) 
Right (b): the spatially unstructured fandom effects (MC = 0.04931) 

  
Areal unit values are directly proportional to grayscale darkness.  
 

Griffith and Paelinck (2009) discuss the use of Eq. 2 for space-time forecasting purposes. The 
bivariate regression coefficients appearing in Table 1 suggest that although the quality of these 
forecasts decreases through time, which is anticipated, one should expect to get reasonably good 
forecasts for at least three or four future years (Figure 3a). One reason these forecasts do not 
extend further into the future is because the random effects term best fits the average point of the 
series, which tends to be at its midpoint, resulting in a quadratic relationship between time and 
the R2 values. Nevertheless, although acknowledging a slight time series trend in the bivariate 
GLMM regression coefficients for the intercept (decreasing from 4.1855 to 4.1633) and the ESF 
aggregate coefficient (increasing from 0.9848 to 1.0136), short range population forecasts can be 
achieved with the pooled estimated constant term e4.1725 modified by deviations from this mean 
geographically distributing the population across the country according to areal unit size, the 
spatial autocorrelation pattern captured by the ESF, and local heterogeneity, all of which are 
quantities varying across locations but not time. The parameter time trends (Figure 3b) suggest 
that the constant term becomes less important, whereas the spatial autocorrelation and local 
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heterogeneity terms become more important, with the passing of time. Therefore, forecasts can be 
constructed for time t+k by rescaling the estimated model results as follows: 

 

kti,P̂ +  = Areai exp(4.1725 + ESFi + iξ̂ ) 

∑

∑

=

=
+

++
230

1i
iii

230

1i
kti,

)ξ̂ESFexp(4.1725Area

P

 , (3) 

 
where Pi,t is the population of areal unit i are time t, Areai is the area of areal unit i, and ESFi is 

the ESF value for areal unit i. Eq. 3 requires a total population figure, Pt+k = ∑
=

+

230

1i
kti,P , which can 

be a short range aggregate forecast. Mean squared error (MSE) calculations based upon Eq. 3 
again emphasize that the estimated spatially structured and spatially unstructured random effects 
terms best describe the midpoint of the space-time series (Figure 4a), and hence the equation’s 
restriction to producing only short range forecasts, which becomes a necessary tool when time 
series are very short. This conclusion does not change by using the year-specific bivariate 
GLMM coefficients because the random effects terms are estimated with the entire foundational 
time series. For example, the 2008 year-specific results yield an increase in the MSE of 12.4%. 
The best case scenario is for 2006, for which the MSE decreases, but by only 1.1%. Spatially 
structured random effects can be estimated without a time series, although a single-year estimate 
may contain some biased; but the spatially unstructured random effects term, which here 
accounts for roughly 20% of the variability in the total random effects term, cannot. 
 
Figure 3. Time series for model goodness-of-fit statistics and parameter estimates for population densities 

Left (a): forecasted R2 values with prediction intervals.  
Right (b): individual map bivariate regression coefficients for the random effect terms; black denotes the 
coefficient for the spatially structured term, and gray denotes the coefficient for the spatially unstructured 
term. 
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Figure 4. Time series for model goodness-of-fit and population density forecast prediction error 

Left (a). The MSE for the population maps based upon the forecast Eq. 3 
Right (b). Scatter plot and correlation matrix for the spatial prediction error and five forecast error maps 

  
 

The annual space-time results for 2009-2013 can be analyzed to assess the quality of 
population count estimates presented by Eq. 3 estimated with data for 1997-2008. A simple Box-
Jenkins time series forecast based upon the annual total population counts for South Korea during 
1992-2008 (Figure 1a) yields 

2t1tt 0.85401P0.85401)P(1344381.20.85401)(1P̂ −− +−+×−=  , (4) 

where Pt denotes the population of South Korea at time t, a first differencing was done, the first-
order autoregressive parameter estimate is 0.85401, and the mean of the differenced series (with 
only 17 points in time) is 344381.2. Residual diagnostics suggest that only trace serial correlation 
remains. Table 2 reports the forecasts for the subsequent five years, which are reasonably good 
given the shortness of the time series. The pseudo-R2 values are better than expected (Figure 3a), 
and are identical for the observed and forecasts because the forecasts are simply a rescaling of the 
predicted values corresponding to the observed counts. On average, the MSEs for the forecasts 
are more than 20% greater than their corresponding MSEs for the predicted values. This reflects 
the sizeable prediction error for the forecasted 1997-2008 total population: the variance of the 
space-time distribution of values has an error term for the forecasts multiplied by an error term 
for the predicted values; this latter error component is constant over time, whereas this former 
error component increases across a forecast horizon. Figure 5a presents the 2009 space-time 
population counts forecast; Figure 5b portrays the geographic distribution of its spatial prediction 
error. This result can be extended to space-time forecasts by the mathematical statistics theorem 
(Goodman, 1962) about the variance of the product of two independent random variables (i.e., 
the time series forecasts here are independent of the spatial forecasts), which equals 

∑
=

++

++
230

1i
iii

2
s

2
T

2
T

2
s

2
T

2
s

)ξ̂ESFexp(4.1725Area

σµσµσσ
iii  , (5) 

where the denominator ∑
=

++
230

1i
iii )ξ̂ESFexp(4.1725Area  = 48,212,412 and can be assumed fixed 

here because it does not change from forecast to forecast, 2
Tσ  denotes the variance of the time 
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series forecast (from Table 2), Tµ  denotes the forecasted time series value (i.e., its mean; from 

Table 2), 2
si
σ  denotes the spatial variance for areal unit i (portrayed in Figure 5b), and 

isµ  denotes 

the spatial mean for areal unit i (portrayed in Figure 5a). The time series forecasting uncertainty 
approximately multiplies each of the areal unit prediction standard errors by the following 
factors: 

year 2009 2010 2011 2012 2013 
factor 1.05013 1.11160 1.21758 1.36293 1.53854 

 
In other words, the map in Figure 5b essentially retains its geographic pattern, but with rescaled 
values (Figure 4b). 
 
Table 2. Selected summary statistics for the forecasts 

Year 
Total population forecast Observed total Forecast total 

Forecast Standard error In 95% CI R2 MSE R2 MSE 

2009 49822455   60988 Yes 0.9956 815827242 0.9956 1032494759 

2010 50113636 128471 No 0.9950 1034744617 0.9950 1310487901 

2011 50412584 203292 Yes 0.9938 1287201916 0.9938 1566867185 

2012 50718165 282071 Yes 0.9932 1550314549 0.9932 1844516609 

2013 51029410 362684 Yes 0.9923 1833486681 0.9923 2150340770 

 
Figure 5. The geographic distribution of 2009 space-time-based population count forecasts and their uncertainty 

5a. The space-time population forecast for 2009 
5b. The spatial prediction standard error 
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5. Concluding remarks 

This paper summarizes an advance in short run space-time regional population forecasting when 
existing time series contain relatively few observations and points in time are close together. This 
advance exploits spatial autocorrelation as well as random effects in a GLMM framework to 
geographically distribute aggregate population over areal units of a geographic landscape. The 
spatial autocorrelation component is approximated with an ESF, which captures the complex map 
pattern portraying spatial dependence that is latent in population counts, and preserves it in 
regional forecasts of population. As such, this paper differs from Griffith and Paelinck (2009) in 
four ways: (1) it treats a substantially larger number of areal units (230 rather than 11); (2) it 
evaluates forecasts with observed data (rather than output from a spatial econometric model); (3) 
it derives prediction error maps to accompany population forecast maps; and, (4) it analyzes 
South Korean population counts (rather than Belgian economic value added figures). 

One surprising outcome from the analysis summarized here is that the quality of the regional 
forecasts is better than expected, given diagnostics such as Figure 3. A second is that the two 
time components in expression (5) do not dominate the prediction error maps. A third is that 
although time dependence almost always dominates spatial dependence in practice, results 
summarized here demonstrate that such temporal dominance can materialize through inertia in 
spatial dependence as captured by a spatially structured random effects term. 

Empirical evaluations of the short run population forecasts indicate that using an ESF to 
describe spatially structured random effects coupled with a spatially unstructured random effects 
term furnishes good annual county-level geographic resolution predictions for several years into 
the future. Similar evaluations need to be conducted for other countries and other geographic 
resolutions. 
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