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Abstract 

This paper provides useful guidelines to practitioners who investigate causality-in-mean 
and/or causality-in-variance within a trivariate system by means of the two-step procedure 
proposed by Cheung and Ng (Journal of Econometrics, 1996) and modified by Hong (Journal 
of Econometrics, 2001). Specifically, this study highlights cases that can mislead the 
researcher into reporting false causal relations among the variables under scrutiny. The results 
of Monte Carlo simulations reveal the seriousness of the problem. Finally, an empirical 
application that investigates causality-in-mean among three major European stock markets 
illustrates the proper procedure to follow for correct inference. 
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1. Introduction 

The investigation of causal relations between financial variables is crucial for most 
participants in the international money markets. Granger (1969) introduced the concept of 
Granger causality between two (groups of) variables. In general, a variable Granger causes 
another variable when past information of the former is necessary to obtain optimal forecasts 
for the latter. Since the seminal work of Granger (1969), a number of alternative 
methodologies have been developed to test for Granger causality within a system of variables. 
Most of these methodologies are designed to examine the existence of either causality-in-
mean or causality-in-variance.  

One of the Granger causality tests available in the literature is the two-step procedure 
proposed by Cheung and Ng (1996) and modified by Hong (2001). The proposed test statistic 
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has two important characteristics that make it attractive to practitioners1. First, it is based on 
simple univariate models and thus it avoids the estimation of complicated multivariate 
models. Second, it can be used to test for both causality-in-mean and causality-in-variance. 
On the other hand, this causality test is (by construction) suitable for bivariate system of 
variables. 

The test statistic can be used in the context of a system of more than two variables. 
However, in this case researchers should be careful when interpreting the results of the test to 
avoid reaching false conclusions. Misleading results are likely to arise in the presence of a 
"leading" variable that Granger causes two variables of the system. In order to clarify this 
point, assume a system of three variables, say (x1t , x2t , x3t), where x3t Granger causes both x1t 
and x2t, while there is no causality between x1t and x2t. In this case, it is likely that the two-step 
causality test will erroneously indicate the existence of bidirectional causality between x1t and 
x2t. A different case that can also mislead the researcher to false conclusions arises when x3t 
Granger causes only x2t, while there is contemporaneous correlation between x3t and x1t. In 
this case, the causality test might erroneously indicate that x1t Granger causes x2t. In both 
scenarios, the problem arises from the fact that the two-step causality test is based on 
(estimated) univariate models that ignore the effect of x3t on x1t and x2t. Thus, one of the main 
advantages of the test, that is the estimation of simple univariate models instead of 
multivariate models, can become a serious disadvantage. Fortunately, there exists a simple 
way to overcome this problem. The solution requires that the effect of x3t on x1t and x2t is 
filtered out when modeling x1t and x2t. 

This paper first uses a simple theoretical example to highlight the problem and explain the 
dynamics that cause the two-step causality test to indicate the existence of false causal 
relations when implemented to a trivariate system. Afterwards, by means of Monte Carlo 
simulations, this study attempts to identify the seriousness of the problem. Moreover, the 
study proposes a simple way to ensure that the reported (by the test) causality between two 
series is correct. Finally, the proper procedure to follow for correct inference is illustrated in 
an empirical application that investigates causality-in-mean among three major European 
stock markets. It is important to note that this study does not address the issue of omitted 
variables nor it questions the good performance of the causality test of Cheung and Ng (1996) 
and Hong (2001). 

The rest of the paper is organised as follows. Section 2 briefly describes the causality test 
proposed by Cheung and Ng (1996) and modified by Hong (2001). Section 3 describes a 
theoretical example to highlight cases that can lead to incorrect conclusions about causality 
between two variables. The main findings of a Monte Carlo simulation experiment, aiming at 
examining the size and power properties of the test statistics under consideration, are reported 
in Section 4. Section 5 presents an empirical example and finally Section 6 concludes the 
paper. 
 
 
2. The two-step causality test 

Cheung and Ng (1996) introduced a method to test for the existence of Granger causal 
relations in either the mean or the variance of two series, say (x1t , x2t). The method has two 
stages. In the first stage, univariate time-series models are estimated for both series under 
scrutiny, i.e. 
 

                                                           
1 Among others, Speight and McMillan (2001), Bhar and Hamori (2005) and Inagaki (2007) base their studies on 
this two-step methodology. 



Theologos Pantelidis  Testing for causality in the presence of leading variables 
 

               4(1), 17-29, 2015                                                                                                                               19 

��� �  ��,� � 	�,� 
��   

��� �  ��,� � 	�,� 
�� 
where e1t and e2t are two zero mean, independent white noises with unit variances. This 
specification allows for time variation in both the conditional means and the conditional 
variances. The univariate ARMA models with GARCH specification in the conditional 
variance are special cases of this representation. 

In the second stage, the researcher can test for (i) causality-in-mean based on the sample 
cross-correlations of the standardised residuals �
̂�� � ������,����,� , � � 1,2� and/or (ii) causality-in-

variance based on the sample cross-correlations of the squared standardised residuals �
̂��� , � � 1,2�. 
Let ����, � � 1,2 be either the standardised residuals 
̂�� (for the causality-in-mean test) or 

the squared standardised residuals 
̂���  (for the causality-in-variance test). Then the sample 
cross-correlation function of ���� and ��������,����� is given by the following formulas: ���,���� � � �,����!� �,��0� # � �,��0� 
where 

� �,���� � $%
&  '�� ( )����� * �+��� # ������, * �+���-, � . 0/

�0,1�'�� ( )�����1, * �+��� # ����� * �+���-, � 2 0/
�0�,1�

3 
T is the sample size, �+�� is the sample mean of ���� and � �,��0� is the sample variance of ���� , � � 1,2. 
The test statistic proposed by Cheung and Ng (1996) is the following: 4 � ' ∑ ���,��6,07 ���           (1) 

It can be shown that asymptotically S follows a 86�71��  distribution2. If we set j = 1 then S 
can be used to test whether x2t Granger causes x1t. Under the null hypothesis, there is no 
Granger causality from x2t to x1t. On the other hand, we can use 4 � ' ∑ ���,����,0�6 ��� to test 
whether x1t Granger causes x2t. 

Hong (2001) modified the S-statistic by introducing a weighting scheme for the sample 
cross-correlation at each lag. The proposed statistic is the following: 
 9� �  / ∑ ,:; <=>#?�@,:: �7��A@B�,�BC@<D@ E�#F@B�,�              (2) 

 

where ��/��� � ∑ ;1 * 7/> # �� ; 76> , G�//��70� ��� � ∑ ;1 * 7/> # ;1 * 71�/ > # �H� 76�/��70�  and k (j/M) 

is a weighting function3. Under the null hypothesis of no Granger causality and some 
appropriate regularity conditions, Q1 follows asymptotically a N(0,1) distribution4.  

                                                           
2 Small sample versions of the statistic are also available. 
3 When Hong (2001) calculates the cross covariances of the (squared) standardised residuals, he sets �+�� and �+�� 
equal to their theoretical value which is zero (unity). A small sample version of the statistic is also available. 
4 S and Q1 are one-sided tests and upper-tailed critical values should be used. 
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In most cases, Q1 generates qualitatively similar results irrespectively of the weighting 
function used. On the other hand, the number of cross-correlations used in the calculation of 
both aforementioned statistics, determined by M, is important especially for S. Cheung and 
Ng (1996) argue that M should be large enough to include the largest nonzero sample cross-
correlations. However, a large M is likely to impose a cost in terms of the efficiency of S (as 
argued by Hong, 2001). The utilization of a weighting function makes Q1 less sensitive to the 
value of M. In practice, researchers should check the robustness of their findings across 
alternative values of M. More information about the two statistics can be found in Cheung and 
Ng (1996) and Hong (2001)5. 
 
 
3. A theoretical example  

Consider the following zero-mean and stable VAR(1) model: 
 

I�������J�K � IL��  0   L�J0  L��  L�J0     0   LJJ K I�����������J���K � IM��M��MJ�K 
 
or equivalently in matrix notation: 
 8� � N8��� � O� 
where O� is zero-mean white noise process with covariance matrix ΣV, that is Vt ∼ (0, ΣV) (ΣV 
:= [σij], i, j = 1, 2, 3) and E(VtVs) = 0 when t ≠ s6. Assume that a researcher wants to examine 
the existence of causality-in-mean between the three variables of the model based on the S (or 
Q1) statistic. In the context of this model, there is no causality between x1t and x2t. In order to 
investigate causality between x1t and x2t, the researcher first fits a univariate model to each 
one of the series, say xit = aii xit-1 + uit, i = 1, 2. It is straightforward to see that uit = ai3x3t-1+vit, 
i = 1, 2. Consider the following two cases: 
 

Case 1 (a33 ≠ 0): It is easy to rewrite uit, i = 1, 2 as follows: 
 

��� �  M�� �  ( L�JLJJ,��MJ��,
P

,0� , � � 1, 2 

 
The cross-correlations between ��� and ��� are: 

 

QR�������ST �
$UU
%U
U& L�JLJJS��	�J � L�JL�J	JJ ( LJJS1�, �V W 2 0P

,0X	�� � L�JL�J	JJ ( LJJ�,  �V W � 0P
,0XL�JLJJS��	�J � L�JL�J	JJ ( LJJS1�, �V W Y 0P

,0X
3 

 
Case 2 (a33 = 0): It is easy to rewrite uit, i = 1, 2 as follows: 

                                                           
5 See also Van Dijk et al. (2005) for an examination of the effect of structural breaks in volatility on the size 
properties of the two-step test statistics. 
6 In order to avoid unnecessary complications, this example assumes homoscedastic innovations. 
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 ��� �  M�� �  L�JMJ���,    � � 1, 2 
 

The cross-correlations between ��� and ��� are: 
 

QR�������ST � Z  	�� � L�JL�J	JJ   �V W � 0L�J	�J                     �V W � 1L�J	�J                       �V W � *10                               �V |W| Y 1 3 
 

It is clear that in both cases the cross-correlations between ��� and ���\S are in general non-
zero although there is no causality between x1t and x2t. Therefore, the utilization of the S (or 
Q1) statistic will erroneously indicate the existence of causality between x1t and x2t. This 
happens because the researcher ignored the effect of the "leading" variable, x3t, on both x1t and 
x2t when fitting a model to describe x1t and x2t. More specifically, when x3t Granger causes 
both x1t and x2t and x3t is excluded from the estimated models for x1t and x2t, the tests will 
probably indicate the existence of bidirectional causality between x1t and x2t. This scenario is 
described in Figure 1 (Panel A). Moreover, the cross-correlations calculated above reveal a 
different scenario that might lead to false inference. Assume that x3t Granger causes only (say) 
x2t (i.e. a23 ≠ 0 and a13 = 0), while there is also contemporaneous correlation between x3t and 
x1t (i.e. σ13 ≠ 0). In this case, E(u1t u2t+1) is different from zero and thus the test statistics might 
indicate that x1t Granger causes x2t. This scenario is described in Panel B of Figure 1. It is 
obvious that the possibility of having this kind of interactions that can lead to incorrect 
conclusions increases with the number of variables under scrutiny.  

The aforementioned example concentrates on testing for causality-in-mean. It is 
straightforward to think of an example that highlights the same problem when testing for 
causality-in-variance by means of the same statistics. Once again, the presence of a "leading" 
variable can cause similar problems and lead to false conclusions. Fortunately, it is easy to 
obtain reliable results by simply including lags of the "leading" variable in the estimated 
models for x1t and x2t. The researcher should then repeat the causality test to check whether 
there is any true causality between x1t and x2t. 
 
 
4. Monte Carlo simulations 

The simple theoretical example described in the previous section aimed at highlighting cases 
that can mislead the researcher into reporting false causal relations among the variables under 
scrutiny. This section reveals the size of the problem by means of Monte Carlo simulations. 
The experiment is based on two different Data Generating Processes (DGPs). The first one, 
DGP - 1, is used to examine the behavior of the two-step causality tests when testing for 
causality-in-mean, while the second one, DGP - 2, is used to examine the behavior of the 
statistics when testing for causality-in-variance. In general, the experiment examines three 
different cases for the sample size T (T = 500, 1000 and 2000 observations).  
 
4.1. Causality-in-mean 

Assume a system of three variables, say (x1t, x2t, x3t). The system is assumed to be complete, 
i.e. there are no omitted variables. The first Monte Carlo experiment uses the following DGP 
to generate random samples: 
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G]^ * 1: I�������J�K �  I0.10.10.1K � I0.5    0   L�J0    0.5   L�J0     0     LJJK I�����������J���K � I
��
��
J�K   
 
where 
 
�� � Eb��c��, � � 1, 2, 3 b�� � 0.001 � 0.6b���� � 0.3
�����  
 

DGP - 1 describes a VAR(1)-GARCH(1,1) process. It is easy to see that under DGP - 1, if 
a13 ≠ 0 and a23 ≠ 0, x3t causes (in mean) both x1t and x2t, while there is no causality between x1t 
and x2t. Thus, x3t plays the role of the "leading" variable in this experiment. Finally, under 
DGP - 1 there is no causality-in-variance between the three variables. 
A set of different values for the parameters of DGP - 1 is considered. The experiment is based 
on 2000 replications for each case under examination. In each replication both statistics (S 
and Q1) are considered to examine all the different bilateral causalities between the three 
variables of the system. The results, reported in Tables 1-37, can be summarised as follows: 
 
1. The two statistics behave qualitatively similar (see Tables 1 and 2 for the Q1 and S statistic 
respectively). 
 
2. When examining the causal relations between x3t and either x1t or x2t, the performance of 
the statistics is very good. More specifically, the power of the statistics to indicate that x3t 
causes both x1t and x2t is 100% in almost all the cases considered in this experiment, while 
when testing for causality from either x1t or x2t to x3t the empirical size of the statistics is close 
to the nominal one of 5%. We should note however that Q1 is slightly oversized while S is 
slightly undersized8. 
 
3. Both statistics suffer from severe size distortions when testing for causality between x1t and 
x2t. Even when the causal effect of x3t on the other two variables of the system is relatively 
weak (i.e. a13 = a23 = 0.2), Q1 rejects the true null hypothesis of no causality from x2t to x1t in 
12% of the cases (T = 500). As expected, the size distortions of the statistics increase 
substantially as the causal effect of x3t on the other two variables of the system becomes 
stronger (i.e. as a13 and/or a23 increase). Moreover, the size distortions of the statistics are 
higher for larger samples. For example, the size of Q1 increases from 55.2% to 83% when the 
sample size increase from 500 to 1000 observations (when a13 = a23 = 0.5). Finally, the size 
distortions of the statistics increase with the persistence of the "leading" variable (see Table 
3). For example, when T = 500, Q1 erroneously indicates causality from x2t to x1t in 15%, 
55.2% and 92.9% of the cases for a33 equal to 0.2, 0.5 and 0.8 respectively. 
 

Fortunately, the severe size distortions of the two statistics can easily be cured by including 
the lag of the "leading" variable, x3t, in the estimated models for x1t and x2t. As soon as x3t is 
included in the univariate specification of both x1t and x2t, the effect of x3t on the other 
variables is filtered out and the empirical size of the statistics is close to the nominal one of 
5% (see Table 4). 
 
 
                                                           
7 For brevity, the tables report the results for selected cases. Critical values for the S and Q1 statistic are obtained 
from the X2 and standard Normal distribution respectively. 
8 We would like to thank an anonymous referee for pointing this out to us. 
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4.2. Causality-in-variance 
The second experiment is properly designed to examine causality-in-variance. DGP – 2 
considers a system of three variables, say (x1t , x2t , x3t), which is assumed to be complete, i.e. 
there are no omitted variables. DGP - 2 is as follows9: 
 G]^ * 2: ��� � 0.1 � 
�� , � � 1, 2, 3     
�� �  b��c��  , c��  ~g�0,1�    b�� � � 0.1 � h�
����� � i�
J����    b�� � � 0.1 � h�
����� � i�
J����    bJ� � � 0.1 � hJ
J����  

 
Under DGP - 2, x3t causes (in variance) both x1t and x2t (given that d1 ≠ 0 and d2 ≠ 0), while 

there is no causality between x1t and x2t. A set of different values for the parameters of DGP - 
2 is considered. For brevity, Tables 5 and 6 (Panel A) reports the results for Q1 and S for only 
three of the cases examined. The results of alternative specifications are qualitatively similar. 
The findings are in general similar to DGP – 1 and can be summarised as follows: 
 
1. When examining the causal relations between x3t and either x1t or x2t, the size and power 
properties of the statistics are very good. Specifically, the power of the test to indicate that x3t 
causes both x1t and x2t is almost 100%, while the empirical size of the test (when examining 
the effect of x1t or x2t on x3t) is close to the nominal one of 5% (both statistics are marginally 
oversized). 
 
2. The tests suffers from severe size distortions when testing for causality between x1t and x2t. 
The size distortions are slightly higher for Q1. The behavior of both statistics deteriorates as 
the sample size increases. Moreover, the size distortions of Q1 and S increase substantially as 
the causal effect of x3t on the other two variables of the system becomes stronger (i.e. as d1 
and/or d2 increase). 
 
3. Similar to DGP - 1, the size distortions of the statistics disappear (see Panel B of Table 5 
and 6) as soon as the effect of x3t on both x1t and x2t is filtered out by including sufficient lags 
of 
J��  in the conditional variance specification of x1t and x2t. 
 

In summary, the results of the simulations show that when examining a trivariate system 
with the presence of a "leading" variable (say x3t) that Granger causes the other two variables 
(say x1t and x2t), the S and Q1 statistics suffer from severe size distortions. More specifically, 
the two test statistics have the tendency to erroneously indicate the existence of bidirectional 
causality between x1t and x2t. A simple way to overcome this problem is to filter out the effect 
of x3t on x1t and x2t in the univariate specification of x1t and x2t. 

The implication of the findings of this study for empirical applications is as follows: 
whenever a researcher investigates the existence of causality-in-mean or causality-in-variance 
within a system of three variables based on either S or Q1, she has to be very cautious when 
interpreting the results. To be more specific, this study suggests that whenever the test 
statistics indicate (i) bidirectional causality between two variables (say x1t and x2t) and (ii) the 
existence of a third variable (say x3t) that Granger causes both x1t and x2t, the researcher must 
proceed in further investigation of the relation between x1t and x2t. In order to verify that 
causality between these two variables is correct, the researcher must repeat the causality tests 
by filtering out the effect of x3t on x1t and x2t in their univariate specification. 

                                                           
9 Similarly, alternative distributions, such as the t-distribution, could be considered for zit. 
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5. An empirical example 

This section presents an empirical example that illustrates the proper procedure to follow for 
correct inference when performing a causality analysis based on either the S or the Q1 test. 
The application examines causality-in-mean among the stock market returns of three major 
European countries, namely Austria, France and Germany. The analysis is based on daily 
stock market returns calculated as the logarithmic difference of the corresponding stock 
market index10. The period under investigation spans from 04/01/2000 to 28/11/2014 resulting 
in a total of 3,702 observations. 

Initially, an AR(p)-GARCH(1,1) model is fitted in each series where p is large enough to 
capture the autocorrelation pattern of the series. In the second stage of the analysis, the Q1 
statistic is calculated based on the standardized residuals of the three estimated models to 
examine the existence of causality-in-mean between the markets under scrutiny. The results, 
reported in Panel A of Table 7, reveal a number of causal relations. The results suggest that 
Germany causes both Austria and France. Keeping in mind the results of the simulations 
reported in the previous section, we should check whether the reported causality between 
Austria and France is deceptive and caused by the effect of Germany on these two markets. It 
turns out that this is the case. Panel B of Table 7 reports the results of the causality tests when 
a lag of the German stock return is included in the models of Austria and France. It is clear 
that the test finds no signs of causality between Austria and France. 

The empirical analysis described in this section is a simple example of a situation where 
the researcher can be misled to false conclusions if she ignores the point raised in this study, 
that is, in the context of trivariate system of variables, the existence of a "leading" variable 
that Granger causes the other two variables of the system can (if not taken into account) 
mislead the two-step causality test to erroneously indicate the existence of false causal 
relations. 
 
 
6. Conclusions 

This study highlights cases that can mislead the two-step procedure proposed by Cheung and 
Ng (1996) and modified by Hong (2001) into reporting false causal relations among the 
variables of interest. More specifically, the study focuses on the size and power properties of 
the two causality tests in the context of trivariate systems. Initially, a theoretical example 
illustrates cases that can mislead the test statistics into reporting false causal relations among 
the variables under examination. This can happen if the system under scrutiny contains a 
"leading" variable (say x3t) that Granger causes two of the variables of the system (say x1t and 
x2t), while there in no causality between x1t and x2t. In such a case, the test statistics have the 
tendency to erroneously indicate the existence of bidirectional causality between x1t and x2t. 
Afterwards, a set of Monte Carlo simulations reveal the size of the problem. The test statistics 
seem to suffer from severe size distortions that, interestingly, increase with the sample size.  
These findings have important implications for empirical works. This paper highlights the 
need for careful examination of empirical results before reaching final conclusions. 
Fortunately, in a trivariate system, there is a simple way to find out whether the reported 
causality between two variables is true or false. The researcher should simply filter out the 
effect of the "leading" variable when modeling x1t and x2t. 
 
 
 

                                                           
10 Data source: Yahoo Finance. 
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Table 1. Percent rejections of H0: “No causality” (Q1-statistic, DGP-1, α33=0.5)∗ 

 T=500 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  12.0  10.5  99.5  7.2  99.7  6.3 
α13= α23=0.5  55.2  52.9  100.0  6.2  100.0  5.9 
α13= α23=0.8  81.8  81.0  100.0  5.9  100.0  5.6 

 T=1000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  17.3  17.3  100.0  6.9  100.0  6.6 
α13= α23=0.5  83.0  82.7  100.0  6.7  100.0  5.8 
α13= α23=0.8  98.5  98.0  100.0  5.5  100.0  5.3 

 T=2000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  26.9  26.8  100.0  6.5  100.0  7.0 
α13= α23=0.5  98.2  98.9  100.0  6.2  100.0  6.6 
α13= α23=0.8  100.0  100.0  100.0  5.9  100.0  5.9 

 
 
Table 2. Percent rejections of H0: “No causality” (S-statistic, DGP-1, α33=0.5)* 

 T=500 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  6.8  6.5  97.8  5.1  98.5  4.9 
α13= α23=0.5  31.9  30.7  100.0  4.9  100.0  4.0 
α13= α23=0.8  58.2  57.0  100.0  5.1  100.0  3.8 

 T=1000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  9.3  9.3  100.0  5.3  100.0  4.4 
α13= α23=0.5  62.8  62.1  100.0  4.7  100.0  4.5 
α13= α23=0.8  90.6  89.8  100.0  4.2  100.0  4.6 

 T=2000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

α13= α23=0.2  14.5  15.2  100.0  4.5  100.0  4.4 
α13= α23=0.5  92.0  92.7  100.0  4.4  100.0  4.2 
α13= α23=0.8  100.0  100.0  100.0  4.9  100.0  4.3 

 
 
Table 3.  Percent rejections of H0: “No causality” (Q1-statistic, DGP-1, α13=α23=0.5)* 

T=500 
α33=0.2 α33=0.5 α33=0.8 

X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 
 15.0  12.7  55.2  52.9  92.9  92.7 

T=1000 
α33=0.2 α33=0.5 α33=0.8 

X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 
 21.8  21.5  83.0  82.7  99.9  100.0 

T=2000 
α33=0.2 α33=0.5 α33=0.8 

X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 
 35.4  35.6  98.2  98.9  100.0  100.0 

 

                                                           
∗ “a→b” stands for one-way causality from a to b. 
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Table 4. Percent rejections of H0: “No causality” (DGP-1, α13= α23= α33=0.5)* after removing the effect of the 
“leading” variable 

 S Q1 

 X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 
Τ=500 4.9 4.6 6.7 6.8 
Τ=1000 4.4 5.0 7.7 6.5 
Τ=2000 4.5 4.1 6.9 6.4 

 
 

Table 5. Percent rejections of H0: “No causality” (Q1-statistic, DGP-2, b1= b2= b3=0.8)∗ 

 Panel A (effect of “leading” variable is ignored)  
 T=500 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3  31.2  32.0  99.1  6.9  98.2  6.1 
d1= d2=0.6  37.5  37.6  99.9  6.7  99.9  5.9 
d1= d2=0.9  38.9  40.1  99.9  6.7  99.9  5.5 

 T=1000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3  44.4  43.9  100.0  5.7  99.9  6.3 
d1= d2=0.6  52.0  50.8  100.0  5.2  100.0  6.0 
d1= d2=0.9  54.2  53.5  100.0  5.1  100.0  6.2 

 T=2000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3  64.4  63.5  100.0  7.3  100.0  5.9 
d1= d2=0.6  71.6  71.1  100.0  7.5  100.0  6.0 
d1= d2=0.9  73.4  73.6  100.0  7.3  100.0  6.2 

 Panel B (effect of “leading” variable is taken into account) 
 d1= d2=0.3 d1= d2=0.6 d1= d2=0.9 
 X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 

Τ=500 6.5 6.0 6.5 6.1 6.5 6.2 
Τ=1000 5.9 7.2 6.0 7.2 6.1 7.2 
Τ=2000 6.4 6.7 6.3 6.7 6.3 6.7 

 

                                                           
∗ “a→b” stands for one-way causality from a to b. 
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Table 6. Percent rejections of H0: “No causality” (S-statistic, DGP-2, b1= b2= b3=0.8)∗ 

 Panel A (effect of “leading” variable is ignored)  
 T=500 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3 27.1 27.1 97.5 5.5 96.8 5.6 
d1= d2=0.6 31.4 32.1 99.8 5.6 99.6 5.8 
d1= d2=0.9 33.3 33.3 99.9 5.8 99.9 5.8 

 T=1000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3 39.5 38.5 100 5.7 100 5.9 
d1= d2=0.6 45.4 44.3 100 6.1 100 6.7 
d1= d2=0.9 47.2 45.7 100 5.9 100 6.6 

 T=2000 
 X2t→ X1t X1t→ X2t X3t→ X1t X1t→ X3t X3t→ X2t X2t→ X3t 

d1= d2=0.3 56.8 55.7 100 5.6 99.9 5.7 
d1= d2=0.6 63.2 62.9 100 6.6 100 6.2 
d1= d2=0.9 65.1 65.3 100 6.5 100 6.4 

 Panel B (effect of “leading” variable is taken into account) 
 d1= d2=0.3 d1= d2=0.6 d1= d2=0.9 
 X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t X2t→ X1t X1t→ X2t 

Τ=500 5.3 4.3 5.2 4.4 5.4 4.6 
Τ=1000 5.0 5.8 5.0 5.9 4.9 6.0 
Τ=2000 5.8 5.9 5.6 5.9 5.6 5.8 

 
 

Table 7. Causality tests 

 Panel A 
 AUS FR GER 

AUS causes --- -0.738 -0.910 
FR causes 2.869 --- -0.846 

GER causes 7.043 3.338 --- 
 Panel B 
 AUS FR GER 

AUS causes --- -0.836 -0.915 
FR causes -0.765 --- -0.822 

GER causes -0.047 -0.541 --- 

AUS: Austria, FR: France, GER: Germany 
Bold numbers indicate rejection of the null hypothesis of no causality at a 5% confidence level. 
 

 

                                                           
∗ “a→b” stands for one-way causality from a to b. 
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Figure 1. Graphical representation of possible causal relations among three variables 

Panel A (α13≠0, α23≠0)   Panel B (α13=0, α23≠0, σ13≠0) 
True Process  Test Result   True Process  Test Result 

                
  X1t    X1t   X3t → X2t  X3t → X2t 
                
X3t    X3t     X3t → X1t  X3t → X1t 
                
  X2t    X2t   X3t <┬> X1t     
                
X1t ↔ X2t  X1t ↔ X2t   X1t ↔ X2t  X1t → X2t 
                
“a→b” stands for one-way causality from a to b. 
“a↔b” stands for bilateral causality between a and b. 
“a<┬>b” stands for contemporaneous causality between a and b. 
 

 

 


