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Abstract 

In financial literature, there is an ongoing debate as to whether multi-factor models provide 

better results in explaining the cross-sectional expected return of financial assets than the 

Sharpe Simple Index model. Despite the evidence provided by some authors about the 

superiority of market Beta in major developed markets, the debate does not seem to be closed, 

even less so for emerging markets. In this paper, we provide new evidence on the number of 

significant factors in emerging markets using Random Matrix Theory (RMT) statistical 

techniques. We find that, with a confidence level of 99%, no significant factors are found in 

emerging markets, compared to developed ones, where market beta is always the unique factor. 

Our results confirm that emerging markets have different characteristics in relation to 

developed markets, which is evident in the factors affecting the performance of financial assets. 
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Random matrix theory (RMT) can be thought of as a new type of statistical mechanics where 

instead of having a set of states governed by the same Hamiltonian, we have a set of 

Hamiltonians governed by the same symmetry. Historically, this theory was introduced into 

mathematical statistics by Wishart (1928). 

Many mathematicians later worked out of purely theoretical interest. The physical theory 

foundations of RMT can be traced back to the 1950s decade when Wigner proposed a statistical 

description of the energy levels of the uranium nucleus (Mehta, 2004) employing RMT. In 

1962, Dyson extended Wigner’s ideas, showing that physically reasonable symmetry 

assumptions can be represented by Gaussian ensembles (Dyson, 1962). 

This theory gained momentum when (Bohigas et al., 1984) stated the quantum chaos 

conjecture. 

We owe its connection with finance, and especially with portfolio theory, to the seminal 

works of Laloux et al. (1999); Plerou et al. (2002) where the authors propose the use of RMT 

to model the interactions of financial markets through the Wishart ensemble. The general 

implications of this ensemble are framed within multivariate statistics. Our interest in this work 

is to go further and extend the applicability of RMT to the particular topic of asset pricing for 

emerging markets. 

There exist several proposals to model asset pricing. Together with the mean-variance 

Markowitz model, the introduction of the Single Index Model (SIM) by Sharpe (1964) is one 

of the most relevant contributions made to the study of financial markets. The implications of 

this model have been important not only for researchers, but also for practitioners, to the extent 

that it is associated with the performance of a financial asset with its systematic risk, which is 

measured by Beta. Mathematically, the model is expressed as follows:  

𝑅𝑖𝑡 =  𝛼𝑖 +  𝛽𝑖𝑅𝑚𝑡 + 𝜀𝑖𝑡 (1) 

where 𝑅𝑖𝑡 is the return on the security 𝑖 for the period 𝑡, Rmt is the market return (usually 

proxies through its main equity index or a value-weighted portfolio of all shares), and 𝜀𝑖𝑡 is a 

zero-mean residual. 

The first empirical tests of this model were performed by F. Black and Scholes (1972) and 

Fama and MacBeth (1973), who found that it was valid to explain the returns of companies 

before 1969. However, lately Reinganum (1981), Lakonishok and Shapiro (1986) and Fama 

and French (1992) found anomalies for different periods untił1990. The most obvious reason 

seemed to be the existence of additional factors relevant to asset pricing. The most important 

contribution in this line is the Fama and French Three-Factor Model (Fama and French, 1992, 

1995), mathematically expressed as: 

𝑅𝑖𝑡 −  𝑅𝑓 =  𝛼𝑖 +  𝛽𝑖(𝑅𝑚𝑡 − 𝑅𝑓) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝜀𝑖𝑡 (2) 

where 𝑆𝑀𝐵𝑡 is the return on a diversified portfolio of small stocks minus the returns on a 

diversified portfolio of large stocks, and 𝐻𝑀𝐿𝑡  is the difference between the returns on 

diversified portfolios of high book-to-market and low book-to-market stocks. 

Unfortunately, the three-factor model fails in explaining the cross-sectional expected returns 

for extreme growth and microcap extreme growth stocks. Consequently, in 2015 the authors 

propose the Five-Factor Model (Fama and French, 2015), which is defined as:  
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𝑅𝑖𝑡 −  𝑅𝑓 =  𝛼𝑖 +  𝛽𝑖(𝑅𝑚𝑡 − 𝑅𝑓) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡

+ 𝜀𝑖𝑡 
(3) 

where 𝑅𝑀𝑊𝑡 is the difference between the returns in diversified portfolios of stocks with 

robust and weak profitability correspondingly, and 𝐶𝑀𝐴𝑡 is the difference between the returns 

in diversified portfolios of stocks of companies with low and high investment practices. 

Since the empirical tests of Arbitrage Pricing Theory (APT) models suggested that some 

anomalies persisted (see, for example, Tilman et al. (2004), Novy-Marx (2013), Fama and 

French (2017) or Kubota and Takehara (2018)), researchers have proposed a wide number of 

different factors. Harvey et al. (2016) summarizes 313 papers that study cross-sectional return 

patterns providing a taxonomy of historical factors and definitions. 

A classic debate is one that seeks to know whether the single-factor model is dead or not 

considering all this “zoo factor”. First, Isakov (1999), later Racicot and Rentz (2016) and De 

Nard et al. (2021), and recently Molero-González et al. (2023) concluded that the Sharpe 

Simple Index Model explains the expected cross-sectional return better than the APT models. 

However, if this debate remains open in developed markets, emerging markets will be even 

better. In the financial literature, it is clear that emerging markets show very different patterns 

of behavior than developed markets: higher variability, higher serial correlation, and 

informational inefficiency (Buckberg, 1995; Balladares et al., 2021). Assets Pricing in 

emerging markets is not a fully developed topic. The pioneering paper of Buckberg (1995) 

found that for 1977-1984, in 60% of the emerging markets studied, the SIM did not provide a 

consistent and efficient estimation of Beta. In the period 1985-1991, a high rate-of-return 

variance impedes the estimation of market betas. 

Garcia and Ghysels (1998) tested two Capital Asset Pricing Models (CAPM): a conditional 

world CAPM and a simple local CAPM model for a set of emerging markets. The authors 

concluded that for the conditional world CAPM the model yields a system- atic mispricing of 

risk factors. The CAPM model for size-ranked portfolios showed a much more stable 

relationship than a simple local CAPM model. 

A recent part of the financial literature has explored the factors anomalies in emerging 

markets. Cakici et al. (2013) studied value and momentum in 18 emerging stock markets, 

finding strong evidence for the effect of value in all emerging markets and the effect of 

momentum for all but Eastern Europe. 

Cakici et al. (2016) analyzed the effects of size, value, and momentum in 18 emerging stock 

markets during the 1990-2013 period, finding that only the value effect exists in all markets 

except Brazil. 

Lalwani and Chakraborty (2020) study the performance of various multifactor asset pricing 

models in ten emerging and developed markets, finding that the parsimonious three-factor 

model or its four-factor variants appear to be more suitable across all markets. 

In this paper we pretend to provide new evidence on the significant factors that explain the 

cross sectional expected return of stocks in emerging markets and we do it in the statistical 

sense of high dimensionality. Unlike other works previously published in the financial literature, 

the methodology proposed allows to assume other distributions beyond the Gaussian, even with 

autocorrelations, under the unique condition of having a finite fourth moment. On the other 

hand, It is a purely statistical and does not need regularization techniques or heuristic strategies. 
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The paper is structured as follows: Section 2 introduces the RMT statistical tests, on which 

this study is based; Section 3 brings up the methodology; Section 4 presents the data and shows 

and discusses the results obtained; and Section 5 concludes. 

 

2. Random matrix theory statistical tests 

When discussing high-dimensionality in statistics, it is well known that the covariance matrix 

is distributed according to the Wishart distribution (Wishart, 1928). Consider 𝑋 a matrix of 

dimension n p with random entries identically and independently distributed (IID) according 

to a Gaussian probability distribution function (PDF) with mean zero and variance equal one. 

Each vector 𝑋𝑖  of dimension 𝑝 𝑥 𝑛  is denoted as 𝑋𝑖~𝑁𝑝(0, 𝛴), 𝑖 = 1, … , 𝑛 . In statistics 

𝑊 =  𝑋𝑇𝑋 is said to have a p-variant Wishart distribution of 𝑛 degrees of freedom 𝑊𝑝 (𝑛, 𝛴). 

In RMT we say that the matrices with structure W belong to the Wishart Orthogonal 

Ensemble (WOE), which are rotationally invariant matrices under the Haar measure. A 

universal result is that regardless of the particular matrix X , when the number of columns p is 

of the same order as the number of rows n, and both dimensions grow without any limit, then 

the distribution of eigenvalues of the matrix W converges to what is known as the Marchenko-

Pastur law (Marchenko and Pastur, 1967). 

𝜌(𝜆) =  
√(𝜆+−𝜆)(𝜆−𝜆−)

2𝜋𝑞𝜆
, 𝜆± = (1 ± √𝑞)2  (4) 

 

where is assumed that 𝛴 = 𝐼. 

In the financial context, 𝑋 represents the data matrix of returns, where the first dimension 

usually represents the number of transaction days, and the second dimension the number of 

assets. Thus, 𝑊 becomes the covariance matrix of 𝑝 return time series of length 𝑛. Hence, 

the Marchenko-Pastur law implies a bias in the estimation of the covariance matrix that 

increases as 𝑞 =  
𝑝

𝑛⁄ → ∞ when 𝑛, 𝑝 → ∞.  

On the other hand, the asset pricing problem relies on the factor models, which in turn have 

the covariance matrix as their central object. Consequently, we need to take into account the 

effect of the dimension to avoid bias in estimating the number of factors that determine the 

price of the portfolio assets. 

To address this statistical bias, one approach is to consider the Tracy-Widom distribution 

(Tracy and Widom, 1994), which elucidates the behavior of eigenvalues near the boundary of 

the Marchenko-Pastur law. This distribution helps discern whether eigenvalues reside within 

the noise zone or signify true signals. By leveraging the Tracy-Widom distribution, hypothesis 

tests can be constructed to formally differentiate this bias. 

Onatski (2008) extended this work, demonstrating that the distribution of the first r centered 

and scaled eigenvalues of the Wishart matrix with complex entries converges weakly to the r-

dimensional joint distribution of the Tracy-Widom distribution, denoted as 𝐹2. 

In this way, Onatski (2009) proposed the 𝑅 statistic to statistically determine the number 

of factors in the context of the generalized dynamic factor model (DFM) (Forni et al., 2000). 

Below we show the methodology to apply the 𝑅 statistic in the simplified problem when the 
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loading matrix does not depend on the lag operator. Therefore, we can test the hypothesis of 

the approximate (Chamberlain and Rothschild, 1982) (in contrast to the dynamic) number of 

factors. 

 

3. Materials and methods 

Consider the data matrix 𝑋 composed of the price returns of p firms over n trading days. The 

first step is to divide 𝑋  into two submatrices 𝑋1  and 𝑋2  of dimension 
𝑛

2
𝑝 , that is, 𝑋1 

contains the returns at times 𝑡 = 1, … ,
𝑛

2
 , and the matrix 𝑋2 in the consecutive period 𝑡 =

 
𝑛

2
+ 1, … , 𝑛. The complex matrix 𝑋̂ is then constructed as:  

𝑋̂ =  𝑋1 + 𝑖𝑋2  (5) 

 

The second step consists of calculating the eigenvalues 𝜆̂1, … , 𝜆̂𝑝 of the covariance matrix 
2

𝑛
𝑋̂𝑋̂‡1.  

In a third step, the statistic 𝑅̂ is calculated as a function of the eigenvalues obtained in the 

previous step:  

𝑅̂ =  max
𝑘0<𝑖<𝑘1

𝜆̂𝑖−𝜆̂𝑖+1

𝜆̂𝑖+1+𝜆̂𝑖+2
  (4) 

The fourth step consists of assuming that the real number of factors k is between 𝑘1 and 

𝑘2. Then construct the null hypothesis 𝐻0: 𝑘 = 1 versus 𝐻1: 𝑘1 < 𝑘 ≤  𝑘2 at the 𝛼 level of 

significance using the critical values of the statistic 𝑅̂ to accept or reject the null hypothesis2. 

If 𝐻0 is accepted, the number of statistically significant factors is 𝑘1 and the algorithm is 

stopped. If, in contrast, 𝐻0   is rejected, we try 𝐻0: 𝑘 =  𝑘1 + 1  versus 𝐻1: 𝑘1 + 1 < 𝑘 ≤
 𝑘2 . The procedure is repeated until 𝐻0   is not rejected and the corresponding number of 

statistically significant factors is considered the best estimate of the associated model. 

The general idea of the algorithm is to contrast the value of the R statistic with respect to 

the critical values iteratively for a different number of factors. This is repeated until there is no 

evidence to reject the null hypothesis. In this way, it is possible to statistically confirm the 

validity of the models that are distinguished by proposing a different number of factors to 

determine the asset prices. 

Regarding data, two groups of datasets were considered for this study: developed markets 

and emerging markets. Seven developed markets have been studied: Spain, France, Germany, 

London, Italy, Japan, and United States. Ten emerging markets were considered: China, Brazil, 

Argentina, Chile, India, Korea, Greece, Taiwan, Turkey and Malaysia. This classification of 

countries is based on that made by MSCI Inc. 

MSCI Inc. evaluates equity markets around the world each year and classifies them into four 

categories: developed, emerging, frontier, and standalone markets. This classification is made 

 
1 Symbol ‡ represents the transpose of conjugate of the matrix.  
2 See Appendix B. 
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according to three criteria: market accessibility, economic development, size, and liquidity. For 

further reading, see MSCI (2023). 

A selection criterion was established by which only those companies with less than 5% of 

missing days were taken. Then the logarithmic returns were estimated. The study period runs 

from January 2005 to December 2022. 

In the context of RMT, the determining parameter is the ratio between the dimensions 𝑞 =

 
𝑝

𝑛
. In particular, the noise effect due to the finiteness of the sample is observed for values of 

𝑞 → 1 . Therefore, in this study, the values of 𝑞 =  
1

2
  were considered to analyze the 

explanatory power of the test. The scenario of low-dimensionality can be solved with classical 

statistics. However, the case 𝑞 =  
1

2
 of high-dimensionality requires modern techniques such 

as the Tracy-Widom and Onatski statistical tests, which come from RMT. 

Specifically, a sliding window experiment was designed for each market. Then, the number 

of significant factors was determined in each window at 𝛼 =  {0.01, 0.05, 0.1}. Additionally, 

an upper bound 𝑘2 = 8 was considered, so the alternative hypothesis was tested only up to 

that limit, enough to cover most situations. 

The number of observations (𝑛) and companies (𝑝) for each market and window are shown 

in Table 1. In both datasets, we consider a skip of ∆n=20 days of transactions (roughly a month 

in calendar days) for successive windows. 
 

Table 1. Summary of the number of companies and observations for each of the markets studied 

Country Market p n 

Spain IBEX35 21 42 

France CAC40 33 66 

Germany DAX40 29 58 

United States Dow Jones 28 56 

England FTSE 100 79 158 

Italy FTSE MIB 25 50 

Japan Nikkei 206 412 

China SSE50 13 26 

Brazil Ibovespa 23 46 

Argentina Merval 12 24 

Chile S&P CLX IPSA 17 34 

India BSE SENSEX 26 52 

Korea KOSPI 264 528 

Greece ATHEX 40 80 

Taiwan TWSE 31 62 

Turkey BIST30 19 38 

Malaysia KLCI 21 42 

Source: own elaboration  
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4. Results and discussion 

Figure 1 shows the dynamic of the estimated number of factors for developed markets. 

As can be seen, all of these markets have a common behavior. For a confidence level of 

99%, there is only one statistically significant factor, with the exception of two periods (2018-

2020 and 2021-2022), for which the test does not identify factors. If we reduce the confidence 

level to 95% and 90%, in general, there is only one factor, with the exception of small periods, 

where a two-factor model can be considered. 

As in Molero-González et al. (2023), we have tested whether the identified factor 

corresponds to the Sharpe market factor. To do so, we repeated the experiment, applying the 

test to the covariance matrix of the residual of the Sharpe model (see equation 1), instead of 

applying it to the covariance matrix of the returns. In this way, when the market is removed, no 

factors are identified for the three alpha levels, with the exception of those periods for which 

two factors were identified. In these periods, now the test identifies only one factor, letting us 

confirm that the market is the sole explanatory factor identified by the test and one of the two-

factor model. These results are in line with those obtained in Molero-González et al. (2023). 

The graphs corresponding to these results are shown in Appendix B. 

 

Figure 1. Number of factors as a function of time for the group of developed markets.  

  

Source: own elaboration 

Note: The parameter 𝛼 denotes the significance level of the Onatski test,  

and the red dotted line represents the alternative hypothesis’s upper bound 𝑘2 

 

An exception to this general behavior is Japan. For a confidence level of 99%, there is only 

one factor, with some periods where there are two. Unlike the other markets, we do not identify 

the two periods with no factors at the end of the study period. For the confidence levels of 95% 

and 90%, up to five factors are identified by the test. When the market factor is removed, the 

results are the same as for the rest of the markets: one less factor is identified in all cases. 
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Figure 2. Number of factors as a function of time for the group of emerging markets 

 

Source: own elaboration  

The parameter 𝛼 denotes the significance level of the Onatski test,  

and the red dotted line represents the alternative hypothesis’s upper bound 𝑘2. 

 

Figure 2 shows the dynamic of the number of factors for the group of emerging markets 

studied. As happened with developed markets, here we also observe general behavior. Taking 

into account 𝛼 = 0.01, there are no significant factors. If the level 𝛼 increases to 0.05 and 

0.1, the test identifies only one factor as significant in explaining the cross-section of stock 

returns. If we remove the market factor, there are zero factors in all cases. The market seems 

to be less significant for these markets than for developed ones. The graphs presenting the 

results when the market factor is removed are shown in Appendix B. 

Two exceptions to this general trend are Korea and Greece, which show a behavior more 

similar to that observed in Figure 1, being the market factor significant at a confidence level of 

99% for these two markets. So, despite that Korea and Greece are considered emerging markets, 

they exhibit an analogous behavior to developed markets. 

 

5. Conclusions 

The financial literature on APT has proposed innumerable factors to explain market anomalies 

that were not captured by market Beta. A permanent debate has been whether models with more 

than one factor, such as those of Fama and French (1995, 2015), explained the cross-sectional 

of expected returns more effectively. Authors such as Isakov (1999), Racicot and Rentz (2016) 

or Molero-González et al. (2023) provided further evidence on the superiority of market Beta 

in major developed markets. Despite this, the debate does not seem to be closed for developed 

markets, but even less so for emerging markets. 
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Through a purely statistical approach, we have provided new evidence on the number of 

significant factors in explaining cross-sectional returns, differentiating between developed and 

emerging markets. Using an RMT statistical technique, at a confidence level of 99%, it is not 

possible to find any significant factor that explains the expected cross-sectional return of the 

considered emerging markets. When reducing the confidence level to 95% and 90%, the market 

factor seems to be the unique factor. 

These results seem to confirm previous findings of Buckberg (1995) or Balladares et al. 

(2021) indicating that emerging markets have different characteristics than developed markets, 

which is also evident in the factors that affect the performance of financial assets. 

However, it is important to remark that within the group of emerging markets, we have 

observed how two countries that are considered as emerging but turn out to behave as 

developed: it is the case of Korea and Greece. 

MSCI considers Greece to be emerging because it does not meet the size and market 

accessibility requirements. In the case of Korea, the criteria that remain to be met are those 

related to market accessibility. Despite this, both markets perform similarly to developed 

markets. This fact leads us to think that perhaps the classification taken is not entirely accurate 

when considering countries as developed or emerging. 
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Appendix A. Onatski Test 

Table 2. Critical values for the 𝑅̂ statistic 

Size 

% 

k1 − k0 

1 2 3 4 5 6 7 8 

15 2.75 3.62 4.15 4.54 4.89 5.2 5.45 5.7 

10 3.33 4.31 4.91 5.4 5.77 6.13 6.42 6.66 

9 3.5 4.49 5.13 5.62 6.03 6.39 6.67 6.92 

8 3.69 4.72 5.37 5.91 6.31 6.68 6.95 7.25 

7 3.92 4.99 5.66 6.24 6.62 7 7.32 7.59 

6 4.2 5.31 6.03 6.57 7 7.41 7.74 8.04 

5 4.52 5.73 6.46 7.01 7.5 7.95 8.29 8.59 

4 5.02 6.26 6.97 7.63 8.16 8.61 9.06 9.36 

3 5.62 6.91 7.79 8.48 9.06 9.64 10.11 10.44 

2 6.55 8.15 9.06 9.93 10.47 11.27 11.75 12.13 

1 8.74 10.52 11.67 12.56 13.42 14.26 14.88 15.25 

Source: Onatski (2009) 

Note: The rows represent the level of significance and the columns the size of the test 

 

Appendix B. Testing whether the market factor is the only identified factor 

Figures 3 and 4 show the dynamic of the estimated number of factors when the market one is 

removed, for the group of developed markets (B1) and for emerging markets (B2). In other 

words, it shows the number of statistically significant factors identified by the Onatski test 

when the test is applied to the covariance matrix of the residual instead of applying it to the 

covariance matrix of returns. 

Figure 3. Number of factors as a function of time for the group of developed markets, when the market 

factor is removed  

 

Source: own elaboration 

The parameter 𝛼 denotes the significance level of the Onatski test,  

and the red dotted line represents the alternative hypothesis’s upper bound 𝑘2. 
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Figure 4. Number of factors as a function of time for the group of emerging markets, when the 

market factor is removed 

 

Source: own elaboration 

Note: The parameter 𝛼 denotes the significance level of the Onatski test, and the red dotted 

line represents the alternative hypothesis’s upper bound 𝑘2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


