

Review and challenges in the economic valuation of green spaces

Capucine Chapel^{1,2} • Mohamed Hilal² • Julie Le Gallo²

Received: 25 September 2024 Revised: 17 January 2025 Accepted: 29 January 2025

Appendix

¹ Université Clermont Auvergne, CNRS, IRD, CERDI ² CESAER UMR1041, INRAE, Institut Agro, Dijon, France

 Table A1. Examples of studies on the valuation of green spaces

Studies	Location	Type of green spaces	Economic evaluation method	Estimated value
Menkhaus & Lo ber (1996)	Monteverde Clou d Forest Reserve, Costa Rica	Tropical Rainfore st Reserve	Travel Cost Method (T CM)	Average value per visit: US\$1,150 per U.S. ecotourist
Mulwa & al. (20 18)	Maasai Mara Nat ional Park, Keny a	National Park	Individual Travel Cost Method (ITCM)	Consumer surplus: US\$115 per visitor per day - Annual recreati onal value: US\$73.076 million - Optimal conservation fee: US\$86.90 per day
Soe Zin & al. (2019)	Myanmar	Popa Mountain N ational Park	Travel Cost Method	National visitors spend an average of between \$20 and \$24 per visit, with a total annual recreational value estimated at between US\$16.1 and US\$19.6 million (or \$916 to \$1111 per hectare).

Jaung & Carrasc Singapore

Urban protected

Annual recreational benefits are estimated at between S\$6.95 an

o (2020)	3 3	area (Bukit Tima h) and urban recr eational park (Jur ong Lake Garden s)		d S\$9.07 million for Bukit Timah, and between S\$54.70 and S\$ 66.81 million for Jurong Lake Gardens.
Menendez-Carbo & al. (2020)	Guayaquil, Ecuad or	Urban Park (Mal ecón 2000)	Individual Travel Cost Method (ITCM)	- Consumer surplus: US\$15.72 per person per visit
Mukanjari & al. (2021)	Kruger National Park, South Afric a	National Park	Contingent Valuation M ethod (CVM)	International tourists' WTP: US\$216 to US\$255 per trip - Aggre gate annual WTP: US\$79 million to US\$94 million - Potential r evenue increase: 57% to 61% (US\$38 million to US\$40 million) per year
Correll & al. (19 78)	Boulder, Colorad o, USA	Greenbelts	Hedonic Pricing Method	Properties adjacent to greenbelts had an average value of \$54,37 9, while those 3,200 feet away averaged \$47,044, indicating a p remium of approximately 15.6% for proximity to greenbelts. Ad ditionally, property values decreased by \$4.20 for each foot of d istance from the greenbelt.

Travel Cost Method

Bolitzer & Netus il (2000)	Portland, Oregon, USA	Open spaces	Hedonic Pricing Method	Proximity to open spaces increases property values by 16-20% f or homes located within 1,500 feet of parks or natural areas.
Mahan & al. (20 00)	Portland, Oregon, USA	Urban Wetlands	Hedonic Pricing Method	Increasing the size of the nearest wetland by one acre increased a property's value by \$24.39. Decreasing the distance to the nea rest wetland by 1,000 feet increased a property's value by \$436. 17. Home values were not significantly influenced by wetland ty pe.
Tyrväinen & Mi ettinen (2000)	Salo, Finland	Urban Forests	Hedonic Pricing Method	A one-kilometer increase in distance from the nearest forested ar ea leads to an average 5.9% decrease in dwelling market price. Dwellings with a forest view are on average 4.9% more expensive than those without.
Mooney & Eisgr uber (2001)	Western Oregon, USA	Treed Riparian B uffers	Hedonic Pricing Method	The study found that while stream frontage increases the value of the mean property by approximately 7%, the presence of a 5 0-foot treed riparian buffer decreases the sale price by about 3%, likely due to diminished views.
Des Rosiers & a 1. (2002)	Quebec Urban C ommunity, Canad a	Landscaping Feat ures	Hedonic Pricing Method	 High percentage of lawn cover, flower arrangements, and rock plants: Each additional percentage point of cover increases property value by 0.2%. Presence of a hedge: Adds 3.6% to 3.9% to property value. Landscaped patio: Adds 12.4% to property value. Landscaped curbs: Add 4.4% to property value.

Thorsnes (2002)	Grand Rapids, M ichigan, USA	Forest Preserve	Hedonic Pricing Method	Vacant residential building lots adjacent to a forest preserve sold at premiums ranging from \$5,800 to \$8,400, representing 19% to 35% of the lot price.
Morancho (2003)	Castellón, Spain	Urban Green Are as	Hedonic Pricing Method	Proximity to urban green areas increases housing prices. Specifically, a 1% decrease in the distance to the nearest green area results in a 0.14% increase in housing price. Additionally, having a view of a park or public garden can increase property values by approximately 4.4%.
Payton & al. (20 08)	Indianapolis/ Mar ion County, India na, USA	Urban forest (tree canopy cover)	Spatial hedonic pricing model	The study found that increased vegetation greenness around a property has a positive and significant effect on housing prices. Specifically, a 10% increase in the NDVI measure of greenness was associated with a 1.4% increase in housing price, holding other factors constant.
Voicu & Been (2008)	New York City, US	Community garde ns	Hedonic Regression Mo del	Community gardens have been found to positively impact neigh boring property values, with increases reaching up to 9.4 percent age points within five years of a garden's opening, particularly in economically disadvantaged neighborhoods. This appreciation in property values can result in additional tax revenues of approximately \$500,000 per garden over a 20-year period.

Tapsuwan & al. (2009)	Perth, Western A ustralia	Urban wetlands	Hedonic Property Price Approach	Proximity to wetlands significantly increased property prices. Fo r a property 943 meters away from the nearest wetland (average distance in the study), reducing the distance by 1 meter increas ed the property price by approximately AU\$42.40. Additionally, having an extra wetland within 1.5 km increased the sales price by about AU\$6,976. For a 20-hectare wetland, the total sales premium to surrounding properties was estimated at around AU\$1 40 million.
Donovan & Butr y (2010)	Portland, Oregon, USA	Street trees	Hedonic Pricing Model	Street trees increased the average sale price of a house by \$8,87 0 and reduced time on market by 1.7 days.
Jim & Chen (20 10)	Hong Kong	Neighbourhood p arks	Hedonic Pricing Method	Proximity to neighbourhood parks increased property prices by 1 6.88%, with 14.93% attributed to availability and 1.95% to park view.
Herath & al. (20 15)	Vienna, Austria	Urban greenbelt	Hedonic Price Method	Proximity to the greenbelt positively influences apartment prices. A 1% increase in distance from the greenbelt is associated with a decline in property price of approximately 0.13% to 0.26%, i ndicating a negative rent gradient.
Franco & Macdo nald (2018)	Lisbon, Portugal	Tree canopy cove rage	Hedonic Pricing Method	A 1 km² increase in tree canopy coverage is associated with a 0 .20% increase in dwelling prices, approximately €400 per dwelling.

Black & Richard s (2020)	New York, USA	Elevated urban pr omenade (High L ine)	Hedonic Pricing Method	Properties in the immediate vicinity of the High Line saw their value increase by 35.3%
Bottero & al. (2 022)	Brisbane, Austral ia	Urban parks	Spatial Hedonic Pricing Model	The conversion of Victoria Park from a private golf course to p ublic parkland is projected to increase property prices by an ave rage of 3% for properties located within 750 meters of the park.
Bonnieux & Le Goffe (1997)	Cotentin, Lower- Normandy, Franc e	Traditional agricu ltural and natural landscapes	Contingent Valuation M ethod	The willingness to pay (WTP) for landscape restoration was esti mated at €29 per household annually, highlighting public prefere nce for preserving and restoring traditional landscapes.
Adams & al. (20 08)	Morro do Diabo State Park, São P aulo State, Brazil	State Park (Atlan tic Rainforest)	Contingent Valuation M ethod	- Aggregate WTP: US\$2,113,548 per year (R\$7,080,385/year) - Per hectare WTP: US\$60.39/ha/year (R\$202.30/ha/year)
He & al. (2017)	Southern Quebec, Canada	Wetlands	Contingent Valuation an d Choice Experiment M ethods	Households' annual willingness to pay for wetland preservation and restoration is approximately CAD 447 to CAD 465, indicating a total annual value of about CAD 1.49 to 1.55 billion for 4 00,000 hectares of wetlands, or roughly CAD 3,725 to CAD 3,8 66 per hectare

Roberts & al. (2 017)	Tambopata Natio nal Reserve, Peru	National Reserve	Contingent Valuation M ethod	 Average WTP: US\$15 per tourist for a conservation fee - 66% of tourists willing to pay US\$10 or more Potential annual revenue: US\$318,000 for park management (b ased on 2015 visitation data)
Neckel & al. (20 20)	Passo Fundo, Bra zil	Urban parks (Gar e Urban Park)	Contingent Valuation M ethod	 Mean WTP: R\$30.68 Median WTP: R\$16.00 Aggregate value for maintenance and preservation: R\$959,024 to R\$1,838,928 annually
Albaladejo-García & al. (2021)	Murcia, Spain	Allotment garden s in degraded per i-urban agroecosy stems	Contingent Valuation M ethod	Households are willing to pay an average of €17.2 per month to own an allotment garden plot, and the value of the project to t he population as a whole is estimated at €5.4 per household per month
Amaya & al. (2 021)	Yanachaga-Chem illén National Par k, Peru	National Park	Contingent Valuation M ethod and Choice Exper iment	 Average WTP: US\$0.695 (2.3197 soles) per household annually Aggregate WTP: Approximately US\$6.255 million annually (considering 9 million households in Peru)
Gelo & Turpie (2021)	Kampala, Uganda	New urban park	Contingent Valuation M ethod	Residents of Kampala were willing to pay an average of \$4,728 per household as an entrance fee to use the park.

Birol & al. (200 6)	Cheimaditida We tland, Greece	Wetland ecosyste m	Choice Experiment Met hod	Mean willingness to pay per household for wetland management scenarios: €107.56 for low-impact, €116.49 for medium-impact, and €134.46 for high-impact improvements. Aggregate annual b enefits: €335.9 million for low-impact, €363.7 million for mediu m-impact, and €419.8 million for high-impact scenarios.
Do & Bennett (2009)	Tram Chim Natio nal Park, Mekon g River Delta, Vi etnam	Wetland ecosyste m	Choice Modelling	The proposed wetland conservation program has an estimated ne t social benefit ranging from USD 0.52 million to USD 1.84 million, indicating that its implementation would enhance social welfare
Juutinen & al. (2011)	Oulanka National Park, Finland	National Park	Choice Experiment Met hod	Visitors' willingness to pay per visit: €10.33 for the current scen ario; €18 for an enhanced scenario; potential welfare loss of up to €38 for a degraded scenario.
Kenter & al. (20 11)	Solomon Islands	Tropical forests	Participatory Deliberativ e Choice Experiment	Initial willingness to pay (WTP) for various ecosystem services was approximately 30% of household income. After deliberative interventions, participants were unwilling to trade off key ecosys tem services, indicating these services became 'priceless' to them .

Lantz & al. (201 3)	Credit River Wat ershed, Ontario, Canada	Urban/peri-urban wetlands	Discrete Choice Method	Households are willing to pay between \$50 and several hundred dollars annually for the conservation of existing wetlands
Dias & Belcher (2015)	Saskatchewan, C anada	Prairie wetlands	Choice Experiment Met hod	Households are willing to make a one-time payment of CAD 64 .73 for increasing riparian area from 5 to 10 meters, CAD 57.56 for an increase in wildlife population, and CAD 104.68 for a d ecrease in the frequency of boil water advisories.
Kim & al. (2016)	South Korea	Urban living zon e forests (street tr ees, residential p arks, small schoo l forests)	Choice Experiment	Metropolitan residents are willing to pay between \$56.68 and \$7 6.59 for each 1 m² increase in urban forest, indicating a high value placed on mitigating summer heat island effects
Zhao & Wen (2 019)	Beijing, China	Urban forest	Choice Experiment Met hod	Residents' marginal willingness to pay (WTP) for urban forest at tributes: RMB 29.42 for biodiversity, indicating a preference for higher greenery coverage and richer biodiversity.

Bhat & al. (202 0)	Dachigam Nation al Park, Jammu a nd Kashmir, Indi a	National Park	Choice Experiment Met hod	Visitors are willing to pay an additional ₹302.07 for enhancing t he population of endangered species, ₹121.91 for improving the park area, and ₹171.64 for increasing research and education op portunities.
Netusil & al. (2 022)	Portland, Oregon, USA	Green roofs	Choice Experiment Survey	Total willingness to pay estimates for a 1-year green roof progr am range from approximately \$202 to \$442 per household, trans lating to \$54.4 to \$116.8 million for the city of Portland, depen ding on program characteristics
Xu & He (2022)	Nansha Wetland, China	Coastal wetland park	Choice Experiment Met hod and Travel Cost Int erval Analysis	The total recreational value is estimated at 90.49 million CNY (approximately 13.77 million USD), with per capita non-use value at 116.97 CNY (17.80 USD) and use value at 313.95 CNY (47.79 USD).

Nie & al. (2023)	Beibu Gulf, Gua ngxi, China	Mangrove wetlan	Modified Choice Experiment Model	In 2021, the total value of mangrove wetland ecosystem services in the Beibu Gulf region was estimated at 1.181 billion yuan. Public willingness to pay per capita for enhancing specific ecosy stem services was: 53.89 yuan for biodiversity improvement, 47. 00 yuan for increased mangrove coverage, 35.46 yuan for water quality enhancement, and 17.29 yuan for landscape appreciation.

Source: authors

