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In recent decades, numerous comparative studies have been 
carried out with the aim of identifying the most accurate method 
for time series forecasting (Armstrong & Collopy, 1992; Palmer, 
Montaño, & Franconetti, 2008). This is mainly due to the fact 
that obtaining accurate forecasts has become a crucial issue 
for researchers, practitioners and policy makers in a range of 
disciplines such as tourism, economics or industry. 

Despite the consensus on the need to develop accurate forecasts 
and the recognition of their corresponding benefi ts, there is no one 
model that stands out in terms of forecasting accuracy (Law & Au, 
1999). In this respect, one of the most widely used procedures in 
time series forecasting is the Box-Jenkins methodology (Box & 

Jenkins, 1976), which is based on the fi t of a special type of linear 
statistical model known as ARIMA (Autoregressive Integrated 
Moving Average).

In recent years, several alternative methods to the traditional 
ones have been proposed in order to carry out time series 
forecasting. This is the case of Artifi cial Neural Networks (ANN) 
which has aroused great interest in fi elds as diverse as biology, 
psychology, medicine, economics, mathematics, statistics and 
computers. The reason behind this interest is that ANN are 
universal function approximators capable of mapping any linear 
or non-linear function (Cybenko, 1989; Funahashi, 1989; Hornik, 
Stinchcombe, & White, 1989; Wasserman, 1989). Due to their 
fl exibility in function approximation, ANN are powerful methods 
in tasks involving pattern classifi cation, estimating continuous 
variables and forecasting (Kaastra & Boyd, 1996).

Nevertheless, studies comparing the time series forecasting 
abilities of traditional methods and neural networks (e.g., Balestrino, 
Bini Verona, & Santanche, 1994; Foster, Collopy, & Ungar, 
1992; Pattie & Snyder, 1996; Palmer, Montaño, & Franconetti, 
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Abstract Resumen

Background: The mean absolute percentage error (MAPE) is probably 
the most widely used goodness-of-fi t measure. However, it does not meet 
the validity criterion due to the fact that the distribution of the absolute 
percentage errors is usually skewed to the right, with the presence of outlier 
values. In these cases, MAPE overstates the corresponding population 
parameter. In this study, we propose an alternative index, called Resistant 
MAPE or R-MAPE based on the calculation of the Huber M-estimator, 
which allows overcoming the aforementioned limitation. Method: The 
results derived from the application of Artifi cial Neural Network (ANN) 
and Autoregressive Integrated Moving Average (ARIMA) models are used 
to forecast a time series. Results: The arithmetic mean, MAPE, overstates 
the corresponding population parameter, unlike R-MAPE, on a set of error 
distributions with a statistically signifi cant right skew, as well as outlier 
values. Conclusions: Our results suggest that R-MAPE represents a 
suitable alternative measure of forecast accuracy, due to the fact that it 
provides a valid assessment of forecast accuracy compared to MAPE.

Keywords: Time series, error measures, outliers, neural networks, ARIMA 
models.

El índice R-MAPE como medida resistente del ajuste en la previsión. 
Antecedentes: el Promedio del Error Porcentual Absoluto (MAPE) es 
probablemente la medida de adecuación de la previsión más ampliamente 
utilizada. Sin embargo, no cumple el criterio de validez debido a que la 
distribución de los errores porcentuales absolutos habitualmente presenta 
una forma asimétrica a la derecha con presencia de valores alejados. En 
estos casos, el MAPE proporciona una sobreestimación del correspondiente 
parámetro poblacional. En el presente trabajo se propone un índice 
alternativo, denominado MAPE Resistente o R-MAPE, y basado en el 
cálculo del M-estimador de Huber, el cual permite superar la mencionada 
limitación. Método: se utilizan los resultados derivados de la aplicación 
de modelos de Red Neuronal Artifi cial (ANN) y modelos Autorregresivos 
Integrados de Media Móvil (ARIMA) en la previsión de una serie temporal. 
Resultados: se puede observar que la media aritmética, el MAPE, realiza 
una sobreestimación del correspondiente parámetro poblacional, a 
diferencia del R-MAPE, sobre un conjunto de distribuciones de errores 
con asimetría a la derecha y presencia de valores alejados. Conclusiones: 
nuestros resultados ponen de manifi esto que el R-MAPE representa una 
adecuada alternativa en la medición del ajuste en la previsión, debido a 
que proporciona una evaluación válida de dicho ajuste en comparación al 
MAPE.

Palabras clave: series temporales, medidas de error, valores alejados, redes 
neuronales, modelos ARIMA.
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2008; Sharda & Patil, 1990; Tang, Almeida, & Fishwick, 1991) 
have mixed results. Some favour traditional forecasting methods 
while others favour neural networks. One of the factors that 
may explain this fact in part is, as Makridakis, Wheelwright and 
McGee (1983) indicate, because there is no single universally 
accepted measure of accuracy. The selection of appropriate error 
measures in forecasting is always a problem because, as Mathews 
and Diamantopoulos (1994) point out, no single measure gives 
an unambiguous indication of forecasting performance, while the 
use of multiple measures makes comparisons between forecasting 
methods diffi cult and unwieldy. Finally, research fi ndings indicate 
that the performance of different methods depends upon the 
accuracy measure used (Makridakis, 1993).

The mean absolute percentage error (MAPE) is probably the 
most widely used forecasting accuracy measurement (Armstrong & 
Collopy, 1992; Goodwin & Lawton, 1999; Ren & Glasure, 2009). 
MAPE has important, desirable features including reliability, 
unit-free measure, ease of interpretation, clarity of presentation, 
support of statistical evaluation, and the use of all the information 
concerning the error. However, several authors (Armstrong & 
Collopy, 1992; Makridakis, 1993) have questioned its validity, due 
to the characteristics of error distributions.

This study aims to analyse the statistical properties of the most 
widely used measure in forecast error estimation, the mean absolute 
percentage error (MAPE), and to propose an alternative index, called 
Resistant MAPE or R-MAPE, which makes it possible to overcome 
the limitations detected in this measure. Thereby, the results derived 
from the application of ANN and ARIMA models in time series 
forecasting of electrical energy consumption were used.

Analysis of MAPE index properties 

According to the National Research Council (1980), any summary 
measure of error must meet fi ve basic criteria: measurement validity, 
reliability, ease of interpretation, clarity of presentation, and support 
of statistical evaluation. In attempting to meet these criteria, the 
summary measure of population forecast error most often used is 
MAPE, the mean absolute percentage error (Ahlburg, 1995; Isserman, 
1977; Murdock, Leistritz, Hamm, Hwang, & Parpia, 1984; Smith, 
1987; Smith & Sincich, 1990, 1992; Tayman, Schafer, & Carter, 
1998). MAPE obeys the following mathematical expression:

MAPE =
1

n

ŷt yt
ytt=1

n
100

where n is the size of the sample, ŷ
t
 is the value predicted by the 

model for time point t, and y
t
 is the value observed at time point t.

Meanwhile, Lewis (1982) drew up a table (see Table 1) 
containing typical MAPE values for industrial and business data 
and their interpretation.

According to several authors (Tayman & Swanson, 1999), 
MAPE satisfactorily meets at least four of the aforementioned 
criteria, but is less satisfactory in meeting the validity criterion 
when used in evaluating the accuracy of population forecasts. 
Noncompliance with the validity criterion is due to the fact that the 
absolute percentage error distribution —characterised by having 
only positive values with no upper bound—usually has a right or 
positive skew brought about by the presence of outlier values to 
this side of the distribution. In other words, most observations in 

a right-skewed distribution fall toward the lower values (Fildes, 
1992), and a relatively few large values or outliers form a tail 
that slopes to the right. As a result, in these cases the arithmetic 
mean of the percentage error calculated in a sample provides an 
overstatement of the corresponding population mean. If MAPE 
overstates forecast error, it is not valid, in a criterion-related 
sense (Carmines & Zeller, 1979), for evaluating the accuracy of 
population forecasts. Criterion-related validity is defi ned as the 
degree of correspondence between a given measure and some 
phenomenon of interest that is external to the measure itself; the 
latter is the criterion (Swanson, Tayman, & Barr, 2000).

In view of the aforementioned limitation of MAPE, in recent 
years several solutions have been proposed. Hence, Makridakis 
(1993) suggests the elimination of errors declared as outliers in 
calculating the index. Later on, Makridakis and Hibon (1995) use a 
sort of linear transformation of MAPE called symmetrical MAPE 
or SMAPE. Nevertheless, the empirical results obtained by Tayman 
and Swanson (1999) indicate that SMAPE does not constitute an 
adequate alternative, due to the fact that the data transformed are 
diffi cult to interpret and the index obtained is still affected by the 
presence of outlier values just like MAPE. A similar problem is 
presented by MAPE-T (MAPE-Transformed) (Swanson, Tayman, 
& Barr, 2000), calculated through the use of a modifi ed Box-Cox 
method (Box & Cox, 1964). With the aim of overcoming the 
limitations of MAPE-T, Swanson, Tayman and Barr (2000) propose 
MAPE-R (MAPE-Rescaled), a procedure to convert MAPE-T into 
the same scale as the original observations. However, the calculation 
process until reaching MAPE-R is complex and requires the user to 
possess skills in the fi eld of statistical modelling.

In this study we propose, as the most satisfactory and simplest 
solution to obtain, the calculation of M-estimators in order to obtaining 
a location index of the absolute percentage error distribution which 
is resistant or insensitive to the presence of outlier values. 

The R(esistant)-MAPE index

The arithmetic mean provides a value of the variable which 
represents the centre of gravity of the distribution (in which the 
distribution of observations is balanced). Nevertheless, it is worth 
remembering that the use of this classical location index should 
be limited only to those occasions on which the distribution of the 
variable is symmetrical.

As opposed to the arithmetic mean, there are other more 
appropriate measures of central tendency to describe data when 
dealing with asymmetrical distributions and/or with outlier values. 
In this sense, we have indexes such as the trimmed mean which 
consists of eliminating a proportion of the data from each extreme 
and calculating the mean of the remaining values, or the Winsored 

Table 1
Interpretation of typical MAPE values

MAPE Interpretation

<10 Highly accurate forecasting

10-20 Good forecasting

20-50 Reasonable forecasting

>50 Inaccurate forecasting

Source: Lewis (1982, p. 40)
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mean (Miller, 1986), which instead of eliminating a whole number 
of cases from each extreme, substitutes them for the last value, at 
each extreme, which is part of the analysis. Precisely, Armstrong 
and Collopy (1992) propose reducing the effect of outlier errors by 
trimming or Winsorizing in time series forecasting.

On the other hand, Exploratory Data Analysis, generally known 
as EDA (Tukey, 1977) offers a set of simple, resistant and clear 
techniques. EDA, contrary to traditional descriptive analysis, places 
more relevance on resistant measures and on graphic information. As 
a result, EDA incorporates indexes and graphics that overcome the 
problems presented by classical descriptive statistics when facing 
non symmetrical distributions and the presence of outlier values.

Among the indexes included in EDA we fi nd the median and 
the M-estimators (Huber, 1964). The median is defi ned as the 
value of the variable that divides the distribution into two equal 
parts, each of which contains 50% of the observations, whereas 
the M-estimators look for a location index from the total set of 
observations, by pondering these depending on how near or far 
they are from the centre of the data.

An estimator of location or of scale is said to be resistant if slight 
changes in the distribution of the data have hardly any effect on its 
value. From this point of view, it is obvious that the introduction of 
only one extreme value in the distribution means there is a change 
in the arithmetic mean of that distribution. Thus, the arithmetic 
mean and, therefore, MAPE, is not a resistant or valid index.

However, in order to be able to talk about resistance there is 
a series of properties from which it is possible to establish what 
the best estimator for representing the absolute percentage error 
distribution is. In this sense, we will focus on the search for the 
best location index, basically in the presence of extreme values, 
that is, the so-called ‘outliers’.

Below, we briefl y defi ne the properties to be taken into account 
(Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 1981; 
Wilcox, 1997): 

1. The infl uence function determines the infl uence an anomalous 
value has on the value of the estimator. If the infl uence 
function is not bounded, it means that the further away the 
anomalous datum is, the greater the infl uence exerted on 
the estimator. This is what happens in the arithmetic mean 
of the absolute percentage error (MAPE), whose infl uence 
function is linear and is not therefore bounded.

2. The gross-error sensitivity measures the infl uence exerted 
by a certain quantity of contamination (anomalous values) in 
the data on the value of the estimator. If this value is fi nite, 
the estimator is said to be B-robust.

3. The local-shift sensitivity is the one determined by small 
fl uctuations in the data, and it is desirable for it to be small 
and fi nite. 

4. Under the strategy that it is convenient to eliminate clearly 
anomalous values, the infl uence function must be zero from 
a certain value. For symmetrical distributions around zero, 
the rejection point is the value from which the data must 
be rejected. It is desirable for the estimator to have a fi nite 
rejection point. 

5. The breakdown point of an estimator is the percentage of 
outliers the estimator can stand before breaking down, that 
is, before ceasing to be valid, and this defi nes the quantitative 
robustness. An estimator is resistant only if its breakdown 
point is greater than zero.

The M-estimators of location weight the observations on the 
basis of their relative distance from the centre of the distribution, 
whereas a Winsorized mean replaces a predetermined a percentage 
of observations with a non-outlier value, and what a trimmed mean 
does is to eliminate this percentage of observations. Why use an 
M-estimator and not a Winsorized mean or a trimmed mean, 
instead of an arithmetic mean?

The sample median is B-robust, its gross-error sensitivity is 
fi nite, its local-shift sensitivity is infi nite, its rejection point is 
infi nite, it is qualitatively robust and its breakdown point is ½.

The Winsorized mean is B-robust; however it has an infi nite 
value for local-shift sensitivity, when what is desirable is for the 
estimator to have the smallest possible fi nite value. Likewise, it 
has a non-fi nite rejection point and an a value breakdown point, 
which means that it stands a maximum proportion of alpha value 
of outliers in order to continue making sense as a location index. 
Lastly, the Winsorized mean is not a qualitatively robust estimator.

The trimmed mean is B-robust, therefore its gross-error 
sensitivity is bounded and its local-shift sensitivity is fi nite, 
depending on the alpha value, in which case, in this sense, it is 
an improvement on the Winsorized mean. However, the rejection 
point is still infi nite and the breakdown point is alpha, just like the 
Winsorized mean.

Huber’s M-estimator is an estimator with good properties, both 
in terms of resistance and accuracy, since, amongst others, it is 
qualitatively robust and reaches the maximum possible breakdown 
point and is the most optimum B-robust estimator, that is to say, 
its gross-error sensitivity is bounded. Despite the fact that Huber’s 
estimator does not have a fi nite rejection point, as Hampel’s 
estimator (three part redescending) may have, this does not have 
the effi ciency properties that Huber’s estimator has.

Hence, of the different M-estimators, Huber’s is one of the ones 
that provides values nearest the arithmetic mean, due to the fact 
that it weights with a value of 1 a greater quantity of central data 
than other M-estimators, Tukey or Andrews types, which weight 
all observations below 1, in which case their comparison with the 
arithmetic mean is one of the most conservative. 

One advantage of the M-estimator over a trimmed mean is 
that this will always eliminate data from both extremes of the 
distribution, also eliminating possible valid data, whereas the 
M-estimator will focus more on the extreme with most outlier 
values, and could even leave the other extreme of the distribution 
without modifi cation.

The sample mean, m, as an estimator of central tendency, is 
not B-robust, its gross-error sensitivity is infi nite, its local-shift 
sensitivity is 1, its rejection point is infi nite, it is not qualitatively 
robust and its breakdown point is zero. Automatically choosing 
the arithmetic mean as the best index of location, and effi ciency 
only makes sense when the population distribution is the normal 
distribution, but this does not show any protection against the 
presence of outliers.

Despite the drawbacks of the arithmetic mean in the absolute 
percentage error distribution, and in spite of the existence of 
simple procedures with the advantages already outlined, this is 
still used practically exclusively as if it were the only available 
location estimator. In this study we propose the Resistant MAPE 
or R-MAPE index based on the use of Huber’s M-estimator as 
an appropriate alternative as opposed to the arithmetic mean, in 
order to represent the absolute percentage error distribution in 
forecasting time series.
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Method

Data

In this study we used the data concerning the total monthly 
electrical energy consumption (MWh unit) in the Balearic Islands 

between January 1983 and April 2003, obtaining a time series made 
up of 244 time points (from x

1
 to x

244
). In this sense, the forecast 

of electrical consumption constitutes one of the most paradigmatic 
problems in the fi eld of time series analysis (Pao, 2006).

Figure 1A shows the graphical representation of the original 
time series. Following the traditional procedures of pre-processing 
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Figure 1B. Transformed time series

Figure 1. Graphic representation of the original and transformed time series
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time series, a logarithmic transformation and two differentiations 
—one of order 1 and the other of order 12—were applied. Figure 
1B shows the time series after applying these transformations.

Then, for the neural network model design, the set of patterns 
was divided into three groups: the training group, made up of the 
time points corresponding to the period between 1983 and 1996; 
the validation group, made up of the time points corresponding 
to the period between 1997 and 1999; and, fi nally, the test group, 
made up of the time points corresponding to the period between 
2000 and 2003.

Meanwhile, for the ARIMA model design, the period between 
1983 and 1999 was used to estimate the parameters, and the period 
between 2000 and 2003 was used for the accuracy test in order to 
compare with the neural network models.

Forecasting models
 
Artifi cial Neural Networks (ANNs) are information processing 

systems whose structure and workings are inspired by biological 
neural networks. They consist of a large number of simple processing 
elements called nodes or neurons which are arranged in layers. Each 
neuron is connected to other neurons through communication links, 
each of which has an associated weight. The knowledge the ANN 
has concerning a certain task is found in the weights.

ANN can be considered general, fl exible, nonlinear statistical 
techniques capable of learning complex relationships between 
variables in a multitude of fi elds of study. In this study, we used 
four network models which have proven to be appropriate in time 
series forecasting (for a more detailed description of these models, 
consult Montaño, Palmer, & Muñoz, 2011): Multilayer Perceptron 
(MLP), Radial Basis Function (RBF), Generalized Regression 
Neural Network (GRNN) and Recurrent Neural Networks (RNN). 
With the aim of comparing the accuracy of network models with a 
classical model, we also applied the ARIMA model as it is the most 
widely used procedure for time series forecasting.

Results

Table 2 shows the descriptive analysis of the absolute percentage 
error (APE) distribution in the test set (n = 40) for each of the 
fi ve forecasting models analysed. More specifi cally, we provide 
R-MAPE based on Huber’s M-estimator, the median, MAPE, 
the ratio between MAPE and the median, the robust variation 
coeffi cient, 95% confi dence interval of the asymmetry parameter, 
the Shapiro-Wilk normality test value and, fi nally, the maximum 
error observed. Meanwhile, Figure 2 represents the corresponding 

Box-Plot diagrams. The results show that, in all cases, the 
error distributions do not follow the normal curve; they have a 
statistically signifi cant right skew, as well as outlier values.

The error distribution shape identifi ed and the presence of 
outlier values means that the arithmetic mean, MAPE, is not an 
appropriate index, overstating the corresponding population 
parameter. In this sense, it can be observed that the ratio between 
MAPE and the median oscillates between 7% (GRNN) and 
38% (ARIMA), showing that MAPE has a systematic tendency 
to overstate forecast error. Although the correspondence is not 
perfect, the overstatement of the error by MAPE tends to increase 
as the degree of asymmetry increases. For instance, the model 
which has the greatest skewness, the ARIMA model with a skewed 
confi dence interval between 1.07 and 2.92, is the one which has 
the greatest ratio between MAPE and the median, with 38%. 
Meanwhile, R-MAPE provides lower values which are nearer the 
value of the median, in comparison to the value of the arithmetic 
mean. This is due to the fact that Huber’s M-estimator is not 
infl uenced by outlier values, focusing its attention on the central 
body of the error distribution.

With respect to forecasting accuracy, all the models analysed 
show a good fi t to the test data, with the ARIMA model clearly 
superior in comparison to the neural network models. The good 
forecasting results improve if, instead of using MAPE, we use 
R-MAPE. Thus, for instance, if we take the arithmetic mean 
(MAPE) as a basis, the RBF and GRNN models would be considered 
simply as good forecasting models, following the categorization of 
Lewis (1982). On the other hand, if we take Huber’s M-estimator 
value (R-MAPE) as the basis, all the models analysed would be 
considered highly accurate forecasting models.

Discussion

In our study we propose the use of the R-MAPE index, as 
an alternative to MAPE, based on the calculation of Huber’s 
M-estimator. We were able to analyse, from a theoretical point 
of view, how this alternative complies satisfactorily with a series 
of statistical properties compared to other estimators, in terms of 
validity, resistance and accuracy. It is important to point out that 
R-MAPE maintains the properties of MAPE, that is, reliability, 
ease of interpretation, clarity of presentation, and support of 
statistical evaluation, and overcomes its limitation in terms of 
validity criteria.

The empirical results obtained in the study reveal that, in all 
cases, the error distribution is right skewed with the presence of 
outlier values, leading to MAPE overstating the corresponding 

Table 2
Descriptive analysis of the absolute percentage error distribution

Model R-MAPE
Median

APE
MAPE

Ratio MAPE to 
median

Robust coeffi cient of 
variation 

CI 95% 
skewness

Shapiro-Wilk 
Test

Maximum
value 

MLP 7.35 7.22 8.45 1.17 0.42 0.34; 1.88 0.91** 27.12

RBF 8.93 8.24 10.01 1.21 0.51 0.16; 1.70 0.93 * 32.04

RNN 7.10 6.11 8.10 1.32 0.50 0.24; 1.78 0.91** 24.46

GRNN 9.53 9.49 10.17 1.07 0.59 0.23; 1.77 0.92 * 35.20

ARIMA 3.64 3.42 4.74 1.38 0.44 1.07; 2.92 0.78** 19.15

Note: * <.05; ** <.01
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population parameter. This overstatement was observed in reference 
to the value of the median. Along these lines, our results suggest 
the Huber M-estimator represents a suitable alternative measure of 
forecast accuracy, due to the fact that it provides a valid assessment 
of forecast accuracy. Unlike MAPE, R-MAPE incorporates outlier 
information, but does not allow outliers to dominate the summary 
measure of error.

The comparative study conducted between neural network 
models and ARIMA models on the basis of the R-MAPE index 
revealed that all the models show highly accurate forecasting, 
with the ARIMA model as the best one. Therefore, it was possible 
to substantiate once again the fact that neural network models 
constitute a technique to be taken into account by researchers, 
practitioners and policy makers in forecasting time series. 

Finally, among its contributions, this study aims to suggest 
that in all the fi elds of Psychology where time series models—
classical or more innovators like ANN—have been applied, 
it would be preferable to use a valid error measures such as 
R-MAPE. By way of illustration, the fi elds of application could 
be about the use and abuse of psychoactive substances (Sears, 
Davis, Guydish, & Gleghorn, 2009), psychophysiological 
activity (Janjarasjitt, Scher, & Loparo, 2008), criminal or 
violent behaviour (Pridemore & Chamlin, 2006), assessment of 
psychological intervention programmes (Tschacher & Ramseyer, 
2009), teaching methodologies (Escudero & Vallejo, 2000) 
or psychopathology (Valiyeva, Herrmann, Rochon, Gill, & 
Anderson, 2008).

40

30

20

10

0

*

MLP RBF RNN GRNN ARIMA

Figure 2. Box-Plot representation of the absolute percentage error distribution
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