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Multilevel data are prevalent in social and behavioral sciences 
research. Examples of naturally occurring hierarchies include 
observations nested within persons, participants nested within 
therapists, children nested within families, students nested within 
classrooms, and patients nested within health centers (see Apodaca, 
Magill, Longabaugh, Jackson, & Monti, 2013; Imel, Hubbard, 
Rutter, & Simon, 2013; Núñez, Rosário, Vallejo, & González-
Pienda, 2013; Núñez, Vallejo, Rosário, Tuero-Herrero, & Valle, in 
press). The list of areas in which data can be organized into different 
levels or clusters is endless. Outcomes measured on the same 
person, therapist, family, classroom, or health center are almost 
certain to be correlated, and this needs to be taken into account 
in planning the analyses. In each of these cases, researchers can 
use multilevel models, special cases of mixed-effects regression 

models (Raudenbush & Bryk, 2002), because they incorporate the 
random effects into the model to accommodate the possible intra-
cluster or intra-individual correlation. Details of the technique can 
be found in several texts, including Hox (2010), Raudenbush and 
Bryk (2002) and Snijders and Bosker (2012).

The dominant approaches to estimating the fi xed effect and 
random effects model in multilevel analysis are based on the 
principle of maximum likelihood (ML) estimation. Other available 
tools (e.g., bootstrapping and Bayesian methods) are used less 
frequently. When distributional assumptions are made about the 
error forms at each level in the data, both ML and restricted ML 
(REML) estimation methods provide parameter estimates that 
are relatively straightforward. However, it is well known that 
these asymptotic methods can work poorly when the number of 
clusters is small and/or the residuals are not normally distributed. 
Numerical studies have shown that the fi xed parameter estimates 
are unbiased, whereas their standard errors tend to be negatively 
biased as the number of clusters decreases. On the other hand, the 
variance components and their associated standard errors may be 
strongly biased downward, especially if the number of groups is 
too small (see, e.g., Van der Leeden, Meijer, & Busing, 2008). 
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Background: Likelihood-based methods can work poorly when the 
residuals are not normally distributed and the variances across clusters 
are heterogeneous. Method: The performance of two estimation methods, 
the non-parametric residual bootstrap (RB) and the restricted maximum 
likelihood (REML) for fi tting multilevel models are compared through 
simulation studies in terms of bias, coverage, and precision. Results: We fi nd 
that (a) both methods produce unbiased estimates of the fi xed parameters, 
but biased estimates of the random parameters, although the REML was 
more prone to give biased estimates for the variance components; (b) the 
RB method yields substantial reductions in the difference between nominal 
and actual confi dence interval coverage, compared with the REML 
method; and (c) for the square root of the mean squared error (RMSE) of 
the fi xed effects, the RB method performed slightly better than the REML 
method. For the variance components, however, the RB method did not 
offer a systematic improvement over the REML method in terms of RMSE. 
Conclusions: It can be stated that the RB method is, in general, superior to 
the REML method with violated assumptions.

Keywords: Multilevel model, heterogeneous variances, nonparametric 
bootstrap, maximum likelihood.

Análisis bootstrap multinivel con supuestos incumplidos. Antecedentes: 
los métodos basados en la verosimilitud pueden trabajar con difi cultad 
cuando los errores no se distribuyen normalmente y las varianzas a través 
de los grupos son heterogéneas. Método: el desempeño de dos métodos 
de estimación, el bootstrap residual (BR) no paramétrico y el de la 
máxima verosimilitud restringida (MVR), para ajustar modelos multinivel 
es comparado mediante estudios de simulación en términos de sesgo, 
cobertura y precisión. Resultados: encontramos que: (a) ambos métodos 
proporcionan estimaciones no sesgadas de los efectos fi jos, pero sesgadas 
de los efectos aleatorios, aunque el método MVR es más propenso a 
generar estimaciones sesgadas para los componentes de la varianza; (b) el 
método BR depara diferencias más pequeñas entre las tasas de cobertura 
real y nominal de los intervalos de confi anza que el método MVR; y (c) los 
valores de la raíz del error cuadrático medio (RECM) para los efectos fi jos 
son algo más pequeños bajo el método BR que bajo el método REML. Sin 
embargo, en lo referido a los componentes de la varianza, el método de 
BR no ofrece una mejora sistemática sobre el método MVR en términos 
de RECM. Conclusiones: en general, se puede afi rmar que el método BR 
resulta superior al método MVR con supuestos incumplidos.
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Also implicit in the assumptions about error is the homogeneity 
of variance within clusters and across clusters. If the variances 
are heterogeneous, but vary randomly, it does not appear that the 
fi xed effects or standard errors are biased (Kasim & Raudenbush, 
1998), but if the variances depend in some way on the explanatory 
variables, it can severely affect the validity of inferences about 
random parameters and fi xed effects (Dedrick et al., 2009; 
Raudenbush & Bryk, 2002). 

To improve the accuracy of inferences, correct standard errors 
are required for data that violate distributional assumptions. As 
pointed out by Maas and Hox (2004), a well-known correction 
method for producing robust standard errors is the so-called 
Huber/White sandwich estimator, which is widely available in 
software for estimating multilevel models, including MLwiN and 
HLM. This approach, also available through the PROC MIXED 
option (see Sterba, 2009 for details), may not be the best choice 
for alleviating the bias when the sample size is not large enough 
(Diggle, Heagerty, Liang, & Zeger, 2002). Another commonly used 
method is to apply a non-linear transformation to the dependent 
variable. Unfortunately, it is not generally obvious which is the 
best choice of transformation and the interpretation of results on 
the selected scale may be unclear. Hodges (1998) discusses Box-
Cox transformations for multilevel models. A somewhat different 
approach that may be viable for making inferences when the data 
fail to fulfi ll the assumptions of either normality or homogeneity 
it is based on deriving the empirical sampling distribution of the 
statistic of interest by randomly resampling with replacement from 
the sample available. Although the bootstrap methodology appears 
to be a viable alternative for improving the accuracy of inferences 
about parameter values (Carpenter, Goldstein, & Rasbash, 2003; 
Shieh & Fouladi, 2002), applications of bootstrapping are rare 
within the multilevel arena.

This paper investigates two issues. The fi rst is to clarify the 
performance of the standard two-level analysis as implemented 
through the PROC MIXED (SAS Institute Inc., 2011) module in 
terms of bias, coverage, and precision when the normality and 
variance homogeneity assumptions are violated. As mentioned 
above, if the variances change as a function of some predictor, this 
will result in incorrect estimates of the sampling variability and 
it can lead to quite distorted statistical inferences. Nevertheless, 
little is currently known about the direction and severity of such 
effects. The second question is to check to what extent the residual 
bootstrap approach can correct bias in parameter estimates and 
improve the accuracy of inferences about parameter values. When 
the residuals are not normally distributed, bootstrapping has been 
presented (Carpenter, Goldstein, & Rasbash, 2003; Goldstein, 
2011; Wang, Carpenter, & Kepler, 2006; Wang, Shi, & Fisher, 
2011) as a potential strategy for dealing with the bias in the 
variance estimates and standard errors that results from using ML 
or REML estimation.

Notation and defi nition of the statistical procedures

Let Y
ij
 denote the ith observation (i = 1,…, n

j
) in the jth group (j= 

1, …, m) and n = ∑m
j
n

j
 the total number of subjects enrolled in the 

study. The simplest multilevel model is a random intercept model:

 Y
ij 
= β

0j
 + e

ij
 (1)

 β
0j
 = γ

00 
+ u

0j
 (2)

where u
0j 

~
 
N(0, τ

00
), e

ij 
~

 
N (0, σ2

e
), and cov(e

ij
, u

0j
)= 0. Substituting 

Equation 2 into Equation 1, we have the one-way random effects 
ANOVA model

 Y
ij 
= γ

00 
+ u

0j
 + e

ij
 (3)

Covariate information can be introduced at both the individual 
and group level to create a more general multilevel model, which 
can be expressed in matrix notation as

 
 y

j 
= X

j 
β

j 
+ e

j
 (4)

 β
j 
= Z

j 
γ

 
+ u

j
 (5)

where y
j
 is an n

j
 -vector of outcomes, X

j
 is an n

j 
× p matrix of 

explanatory variables at the individual level, β
j
 is a p-vector of 

individual-level random parameters, e
j
 is the error term on the 

individual level distributed normally with mean vector of 0 and 
covariance matrix ∑

j
, which is often assumed to be σ2 I, Z

j
 is a p × 

q matrix of explanatory variables at the group level, γ is a q-vector 
of group-level fi xed effects, and the error term on the group 
level u

j
 has dispersion matrix Г, which expresses the between 

group variability and covariance of the lowest level regression 
coeffi cients. Substituting Equation 5 into Equation 4 yields

 y
j 
= X

j 
Z

j 
γ + Z

j 
u

j 
+ e

j 
(6)

which is a special case of the linear mixed-effects model of Laird 
and Ware (1982) with X*

j 
= X

j 
Z

j
.

Although several methods may be employed to estimate the 
parameters of multilevel models, including simple two-step ordinary 
and weighted least squares methods, likelihood based-methods, 
robust methods, and Bayesian methods (de Leeuw & Meijer, 
2008; Raudenbush & Bryk, 2002; Goldstein, 2003), in this paper 
we will use a bootstrap resampling method to estimate the standard 
errors of the parameters. In addition to examining bootstrapping 
behavior, REML estimation, as implemented in PROC MIXED, 
was also conducted for the purpose of comparison. 

Residual bootstrap (RB) 

Several bootstrap strategies exist for analyzing hierarchically 
nested data (see van der Leeden, Meijer, & Busing, 2008, and the 
references therein). In general, these strategies may be divided into 
three basic categories: (a) parametric bootstrap (which generates 
new data by keeping the explanatory variables fi xed and resampling 
with replacement the Level-1 and Level-2 residuals from a normal 
distribution); (b) residual bootstrap (which generates new data 
by keeping the explanatory variables fi xed and resampling with 
replacement the Level-1 and Level-2 residuals from the observed 
raw residuals); and (c) cases bootstrap (which generates new 
data by resampling with replacement from the original sample 
r-dimensional observation vectors (i.e., Z’s, W’s and Y’s). The 
estimates of the RB were the most accurate, making it the preferred 
estimation method of choice (Carpenter et al., 2003). For this 
reason we focused on the unweighted RB approach.

The version of the RB method used in our simulation is 
similar to that of Wang et al. (2006), except that the resampling 
procedure was carried out for every level of the treatment variable. 
Specifi cally, the following steps were used.
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1. Obtain parameter estimates for the model in Equation 6 
from the data by REML, and calculate residuals at each 
level by the method of shrinkage (i.e., using empirical 
Bayes estimator of u and generalized least squares estimator 
of γ). Both the individual and group residuals are centered 
to avoid biased estimates caused by the nonzero mean of 
the residuals. Then, these centered residuals are rescaled 
to generate new residuals such that their covariance matrix 
is equal to the model-estimated residual covariance matrix 
(see formulas in Wang et al., 2006).

2. Draw random samples with replacement from the two sets 
of rescaled and centered Level-1 and Level-2 residuals, 
separately. Given the existence of heterogeneous dispersion 
matrices and the lack of equilibrium presented by the different 
groups making up the design, the resampling procedure is 
carried out for every level of the treatment variable.

3. Generate the bootstrap samples y*
j
 from y*

j
 = X

j
Z

j
γ+Z

j 

u*
j
+e*

j
, where the coeffi cient vector γˆ is estimated from the 

multilevel model using the original data and the vectors uˆ*
j
 

and eˆ*
j
 are the rescaled and centered error terms on the group 

and individual level, respectively.
4. Compute estimates for all parameters of the two-level model 

for each artifi cial (synthetic) data set.
5. Repeat steps 2-4 B times to obtain B sets of bootstrap 

parameter estimates for inference. As a general guideline, 
1000 bootstrap samples are usually considered to be 
suffi cient. The mean and standard deviation of the empirical 
distribution of the bootstrap estimates for a particular 
parameter are the bootstrap-estimated parameter and its 
standard error, respectively.

 
For more detailed information, see Carpenter et al. (2003), 

Wang et al. (2006), and Wang et al. (2011).

Method

The ex-post facto design that forms a basis for simulation study 
is taken from Núñez et al. (in press). This study focused on the 
relationship between contextual variables and students’ academic 
achievement. To contribute to explaining the stated objective, the 
students’ biology achievement is the outcome variable, predicted 
by a set of explanatory variables measured at the student level 
(Level-1) and at the class level (Level-2). Variables at Level-1 are 
learning approaches (X

1
), study time (X

2
), prior domain knowledge 

(X
3
), homework completion (X

4
), students’ gender (X

5
), class 

absence (X
6
), and parents’ educational level (X

7
). In addition to 

the teaching approaches (Z
1
) per se, other explanatory variables 

included in Level-2 were teachers’ experience (Z
2
), class size (Z

3
), 

and teachers’ gender (Z
4
).

True data-generating model

In the data-generating process, only the fi rst two explanatory 
variables at Level-1 and the fi rst two explanatory variables at 
Level-2 were included. The model (represented as levels) used to 
simulate the data becomes, at Level-1:

 Y
ij
 = b

0j
 + b

1j
X

1ij
 + b

2
X

2ij
 + e

ij
 (7)

and at Level-2:

 b
0j
 = γ

00
 + γ

01
Z

1j 
+ γ

02
Z

2j 
+ u

0j
  (8)

 b
1j
 = γ

10
 + γ

11
Z

1j 
+ γ

12
Z

2j 
+ u

1j
   

    
Consistent with common practice in multilevel modeling, we 

assume that the pupil-level residuals, e
ij
 have a normal distribution 

with mean zero and variance σ2
e
. We also assume that the group-

level residuals, u
0j
 and u

1j
, have a bivariate normal distribution with 

zero means, variances τ
00

 and τ
11

, respectively, and covariance τ
01

. 
The Level-1 regression coeffi cients with subscript j (i.e., b

0j
 and 

b
1j
) are random coeffi cients, which varied across the classes, and 

were treated as dependent variables in the Level-2 equations; those 
without subscript j are fi xed coeffi cients. 

Study variables

Five variables are manipulated in order to examine the 
performance by type of method: 

1. Intraclass correlation (ICC). The amount of variability 
attributable to clusters was set at values of .1 and .3. These 
conditions refl ect the range of values that have been found 
in most multilevel studies (Mass & Hox, 2004).

2. Number of groups (NG). Since the multilevel analysis is 
affected by the sample size at the group level, the performance 
of the test statistics was investigated using two different sizes: 
NG = 50 and NG = 100. After half the time, the number of 
groups in the treatment condition was 20 and 40, and in the 
control condition the number was 30 and 60; the opposite 
occurred for the other half. For accurate estimates 100 or more 
groups would be advisable, however, 50 groups is a frequently 
occurring number in behavioral and educational research.

3. Group size (GS). The number of subjects per cluster was 
small and moderate. Specifi cally, GS = 15 and GS = 30. The 
size of the groups is based on the literature and on practice 
(Mass & Hox, 2004; Núñez et al., in press). 

4. Type of pairing (TP). Previous studies have shown that 
unequal group sizes, when paired with unequal variances, 
can affect Type I error control for tests that compare 
measures independent across groups (see, e.g., Vallejo, 
Fernández, Livacic-Rojas, & Tuero-Herrero, 2011a). 
Therefore, positive and negative pairings of group sizes 
and variance were investigated. A positive pairing implies 
that the treatment condition having the smallest number of 
clusters is associated with the smallest variance, whereas 
the opposite occurs for a negative pairing. The unequal 
treatment conditions variances were in the ratio of 1:5. 

5. Distribution shape (DS). To investigate the infl uence of non-
normality of the error terms at all levels on the robustness 
of the procedures, we generated data from normal and non-
normal distributions. Specifi cally, besides the multivariate 
normal distribution with univariate skewness (γ

1
) and 

kurtosis (γ
2
) equal to zero, the data were obtained from an 

asymmetric light–tailed distribution with shape parameters 
equivalent to those of an exponential distribution (i.e. γ

1
 

= 2; γ
2
 = 6). This distribution and its associated values of 

skew and kurtosis is representative of those encountered in 
applied psychological research by Micceri (1989).

  
Under each scenario, 1000 data sets were generated using the 

power method proposed by Fleishman (1978), and the properties 
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of the estimators were compared for bootstrap and REML 
procedures. In performing the residual bootstrap, B = 1000 
bootstrap samples were taken. For all simulated conditions, the 
regression parameters (i.e., γ’) were set to the value of one. The 
Level-1 variance component (i.e., σ2

e
) was also set to the value of 

one. The variance components of the intercept and slope (i.e., τ
00

 
and τ

11
) were assumed to be the same (i.e., .11, and .43 per input 

ICC .1 and .3), while the residual covariance between the intercept 
and the slope was constrained to zero. The fi xed values for the 
observations on the X’ and Z’ were determined by drawing from 
a normal distribution with a mean of zero and a variance of one. 
Later, we dichotomized some variables by an arbitrary threshold 
(i.e., the mean of all observed data). Data manipulations were 
performed in SAS/IML and SAS MACRO languages. 

Evaluation criteria

To determine the accuracy of the estimation methods being 
compared, we examine their performance in terms of bias, 
coverage, and precision. 

1. Bias. For the generic parameter θ, bias is defi ned here as 
the difference between its average bootstrap estimate and 
its true value, and is given by (θ̂̄B - θ), where θ̂̄B = ∑S

i=1
θ̂B

i
 / 

S and θ̂B
i
 is the bootstrap estimate of interest within each of 

the i = 1,..., S simulations. The smaller the bias, the closer 

the estimate is to the true value, and so the more accurate the 
estimate. 

2. Coverage. The coverage is the percentage of times that true 
parameter value is covered in the confi dence to the nominal 
rate. Percentile-based confi dence intervals are given by θ̂B

i
 

± Z
1-α/2

 SE(θ̂B
i
 ), where SE(θ̂B

i
 ) denotes the standard error 

(i.e., the standard deviation of the bootstrap replicates) of 
the estimate of interest within each simulation and Z

1-α/2
 the 

1-α/2 quantile of the standard normal distribution. For the 
95% confi dence level employed here, the interval used for 
defi ning the robustness of the tests was 92.5 and 97.5. If a 
procedure is working well, the actual coverage should be 
close to the nominal (i.e., Type I error rates are properly 
controlled). For each parameter a non-coverage indicator 
variable was set up that was equal to zero if its true value 
was in the confi dence interval, and equal to one if its true 
value was outside the confi dence interval. 

3. Precision. Bias and variance are often combined into a 
single measure of overall variability of the model called 
mean squared error (MSE), which is computed as: (θ̂̄B - θ)2

+ V (θ̂B), where V (θ̂B) =
 ˆB ˆ B( )

2

/ Si=1
S .

 
It is common to

 report the square root of the MSE (RMSE), which is on the 
same scale as the parameter and makes it easier to interpret 
(Burton, Altman, Royston, & Holder 2006). The smaller 
RMSE values indicate more accurate estimations.
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Figure 1. Interaction plots of intraclass correlation (ICC) and type of pairing (TP) at REML and bootstrap for bias of the second level variances (i.e., u
00

 
and u

11
)
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Results

Assessment of bias

Bias in fi xed effects estimates. Bias occurs when there is a 
systematic difference between the estimated mean and the true 
population mean. The REML method gives results similar to 
the RB method. Although the bias was slightly larger when the 
explanatory variables were qualitative (i.e., X

1 
and Z

1
) rather than 

quantitative (i.e., X
2
 and Z

2
), the bias of the estimates was quite 

small for the two methods. In fact, the largest bias (less than 6%) 
was observed when the data were skewed in the condition with 
the smallest sample sizes in combination with the highest ICC. In 
order to preserve space, the results are not tabled but are available 
from the authors upon request.

Bias in random effects estimates. For the REML method, the 
bias ranged in magnitude from -.442 to .438 for u

00
 (M = -.00, SD 

= .30), -.428 to .438 for u
11 

(M = .00, SD = .30), and .059 to .119 
for e

00 
(M = .08, SD = .02). In contrast to the REML method, the 

bias for the RB method ranged from .020 to .141 for u
00 

(M = .08, 
SD = .13), .049 to .284 for u

11 
(M = .16, SD = .23), and -.133 to 

.045 for e
00 

(M = .06, SD = .05). The effect of bias was markedly 
different for the two methods of estimating the variances, and was 
primarily affected by the TP and by the ICC. As seen from the 
Figure 1, both methods provide biased estimates of the second 
level variances (i.e., u

00
 and u

11
). For the REML method, these 

variances were moderately overestimated (underestimated) when 

the TP was positive (negative) and the ICC value was high, but 
were slightly overestimated (underestimated) when the TP was 
positive (negative) and the ICC value was low. In turn, the RB 
variances were always slightly overestimated.   
    
Assessment of coverage

Coverage rates for the fi xed effects. The accuracy of the 
confi dence intervals of the REML and bootstrap methods was 
evaluated in terms of the coverage rates. For γ

00
, γ

20
 (REML and 

RB based), γ
02

, γ
12 

(REML based), and γ
11 

(RB based) the coverage 
of the 95% intervals turns out to be nearly nominal signifi cance 
level. The coverage of the remaining parameter estimates was 
outside the sampling variation of the true parameter values. In 
particular, the coverage for the REML method ranged from 96.5 
to 97.9 (M = 97.1, SD = .48) for γ

10
, 88.4 to 97.9 (M = 93.1, SD 

= 4.20) for γ
01

, and 88.9 to 97.8 (M = 93.5, SD = 4.06) for γ
11

. In 
turn, the coverage for the RB method ranged from 98.1 to 99.2 
(M = 98.6, SD = .36) for γ

10
, 96.4 to 98.7 (M = 97.4, SD = .62) 

for γ
02

, and 97.7 to 98.8 (M = 98.2, SD = .35) for γ
12

. For positive 
(negative) pairing, the REML method tends to overestimate 
(underestimate) the standard errors of γ

01
 and γ

11
. However, RB 

standard deviations for the same fi xed effects were overestimated. 
The coverage of fi xed effects under REML was primarily affected 
by the TP and the NG, whereas the coverage obtained by the RB 
method was affected by the ICC and the GS. This is shown in 
Figure 2.
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Figure 2. Interaction plots of type of pairing (TP) and method (i.e., REML and bootstrap), and intraclass correlation (ICC) and method for coverage rates 
of Z

1 
(i.e. γ

01
) principal effect and the XZ

11 
(i.e. γ

11
) secondary effect
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Coverage rates for the random effects. As is shown in Table 1, 
the coverage of the variances under REML ranged from 46.5 to 
91.9 (M = 71.5, SD = 13.18) for u

00
, 53.7 to 91.7 (M = 76.4, SD = 

10.68) for u
11

, and 58.3 to 91.3 (M = 74.4, SD = 14.35) for e
00

. The 
coverage of the RB ranged from 78.1 to 99.8 (M = 93.4, SD = 6.96) 
for u

00
, 90.4 to 99.9 (M = 98.1, SD = 2.58) for u

11
, and 74.7 to 94.3 

(M = 85.7, SD = 7.72) for e
00

.
For the group level variances under REML, the coverage 

was primarily affected by the DS and by the TP, whereas the 
coverage obtained by the RB was primarily affected by the GS. 
For the lowest level variance, the coverage of both methods 
was primarily affected by the DS and by the TP. As expected, 
however, the difference in the coverage rates between normal 
and exponential distributions was larger under REML than under 
the RB.

Assessment of precision

RMSE for the fi xed effects. The level of precision associated 
with the REML and RB estimators was evaluated using an 
integrated measure of bias and variance. The estimators in RMSE 
vary widely in respect to the measurement scale used for the 
explanatory variables (i.e., metric or nonmetric). From Figure 
3, it can be seen that there are marked differences between the 
results obtained by the two methods when the Level-1 regression 
coeffi cients are treated as dependent variables in the Level-2 
equations (see Eq. 8), but they give quite similar results for the 
remaining fi xed effects.

RMSE for the random effects. The RMSE for the REML method 
ranged from .19 to 1.50 (M = .62, SD = .39) for u

00
, .23 to 1.53 (M 

= .74, SD = .41) for u
11

, and .18 to .83 (M = .42, SD = .18) for e
00

. 

Table 1
Mean coverage rates (%) of the parameter estimates for the variance components under the REML and bootstrap methods

Normal Exponential

50/15 50/30 100/15 100/30    50/15 50/30 100/15 100/30

REML: ICC =.1 & TP(+)

u
00

 90.80  90.74  89.18  88.20  79.14  76.46  76.52  72.10

u
11

 90.50  90.46  89.54  89.54  82.08  82.82  84.10  81.72

e
00

 91.29  90.87  90.48  89.66  62.54  60.88  64.18  60.28

REML: ICC =.3 & TP(+)

u
00

 91.94  90.88  87.92  85.54  71.12  69.32  68.16  65.36

u
11

 91.74  90.70  88.86  87.60  79.16  74.22  76.34  71.30

e
00

 90.42  90.42  91.08  89.32  64.34  61.30  64.00  61.10

REML: ICC =.1 & TP(−)

u
00

 75.46  72.16  72.24  69.18  64.20  56.66  61.84  53.38

u
11

 77.28  76.40  79.00  73.56  72.68  66.74  71.52  65.40

e
00

 88.34  89.10  89.11  86.38  58.90  57.38  58.88  58.50

REML: ICC =.3 & TP(−)

u
00

 69.75  68.35  65.45  64.23  54.72  50.89  49.57  46.48

u
11

 72.76  70.39  70.76  67.36  61.73  56.48  58.67  53.65

e
00

 86.83  84.25  84.55  82.07  59.60  59.07  59.59  58.33

Bootstrap: ICC =.1 & TP(+)

u
00

 98.64  99.76  99.04  99.02  97.92  94.96  99.21  95.32

u
11

 99.64  99.97  99.88  99.89  99.75  99.24  99.90  99.77

e
00

 93.65  90.78  94.25  90.74  83.16  83.03  83.12  82.64

Bootstrap: ICC =.3 & TP(+)

u
00

 97.04  95.44  97.88  96.55  86.96  81.44  86.39  79.56

u
11

 99.12  97.52  99.71  98.76  97.44  91.72  98.52  94.44

e
00

 93.24  94.08  92.79  92.99  83.56  86.04  85.27  82.84

Bootstrap: ICC =.1 & TP(−)

u
00

 99.45  97.01  99.78  98.29  97.52  92.95  99.03  92.60

u
11

 99.47  99.23  99.90  99.57  99.60  99.73  99.92  99.81

e
00

 84.72  89.55  82.41  89.68  76.35  79.42  74.69  79.81

Bootstrap: ICC =.3 & TP(−)

u
00

 95.76  93.76  97.84  96.24  84.56  78.36  83.49  78.06

u
11

 98.33  96.00  99.17  97.00  96.44  91.99  97.05  90.45

e
00

 90.24  89.81  87.67  87.89  80.02  76.92  79.84  79.36

Note: Bold values correspond to rates outside the interval 92.50 – 97.50, for the 5% level of signifi cance
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The RMSE for the RB method ranged from .20 to 1.53 (M = .59, 
SD = .38) for u

00
, .24 to 1.80 (M = .80, SD = .40) for u

11
, and .17 

to .74 (M = .39, SD = .16) for e
00

. From Figure 4, it can be seen 
that the REML method has largest (smallest) RMSE when the TP 
was positive (negative). The reverse was true for the RB method. 
In Figure 4, it can also be seen that the ICC × method interaction 
displayed a similar pattern, but the difference was smaller. 
This suggests that the RB method does not offer an systematic 
improvement over the REML method in terms of RMSE.

On the other hand, for e
00

, the difference in the RMSE between 
normal and exponential distributions was larger under REML than 
under the RB.

Discussion

In this study, we have examined the performance of RB and 
REML methods of fi tting multilevel models when the normality and 
variance homogeneity assumptions were violated. Until now, the 
performance of the RB method had been restricted to examination 
of robustness under departure from normality (Carpenter et al., 
2003). Our main fi ndings are summed up in the following points.

Firstly, with respect to the bias, the estimated (REML and RB) 
fi xed parameter values were generally close to the population 
values in the presence of heterogeneous and non-normal data. In 
fact, in 88% of the examined conditions the bias was less than 2% 
and in the remaining conditions it never exceeded 6%. However, 
both methods provide biased estimates of the second level 
variances (i.e., u

00
 and u

11
). For the REML method, these variance 

components were slightly overestimated (underestimated) when 
the type of pairing (i.e., relationship between the number of groups 
in each treatment condition and unequal variances) was positive 
(negative) and the ICC value was low (i.e., ICC = .1), but they 
were moderately overestimated (underestimated) when the type 
of pairing was positive (negative) and the ICC value was high 
(i.e., ICC = .3). These results are in general agreement with those 

0,6

0,4

0,2

0
XO X1 X2 Z1 Z2 XZ11 XZ12

REML
Bootstrap

Figure 3. Plot of the mean RMSE rates for the fi xed effects under the REML 
and bootstrap methods

1

0,8

0,6

0,4

0,2

REML
Bootstrap

TP(+) TP(-)

RMSE (U00)

1

0,8

0,6

0,4

0,2

REML
Bootstrap

TP(+) TP(-)

RMSE (U11)

ICC(.1) ICC(.3)

RMSE (U00)

1,2

1

0,8

0,6

0,4

0,2
ICC(.1) ICC(.3)

RMSE (U11)

1,2

1

0,8

0,6

0,4

0,2

REML
Bootstrap

REML
Bootstrap

Figure 4. Interaction plots of type of pairing (TP) and method (i.e., REML and bootstrap), and intraclass correlation (ICC) and method for RMSE rates of 
the second level variances (i.e., u

00
 and u

11
)
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reported by Vallejo and Ato (2012) in the multivariate context using 
uni-level analysis methods. In turn, the RB variances were always 
slightly overestimated. Unfortunately, our data demonstrate that 
this method is not generally accurate when the number of subjects 
per cluster is small.

Secondly, with respect to the coverage of the fi xed effects, the 
REML estimation method was signifi cantly affected by the number 
of groups and the type of pairing. For positive (negative) pairing, 
the standard errors are biased upward (downward). This results 
in confi dence intervals whose coverage rates are above (below) 
the nominal 1-α level, and downwardly (upwardly) biased test 
statistics whose Type I error rates tend to well below (above) the 
nominal alpha level. In turn, the coverage rates for the RB were 
signifi cantly affected by the group size and the ICC, but under 
this method the standard errors tend to be biased upward. On the 
other hand, the coverage of the variance components obtained via 
REML estimation had standard errors that were signifi cantly more 
biased than the corresponding estimates from the RB method. In 
particular, REML yields standard error estimates that are severely 
biased downwards, whereas the RB method yields standard error 
estimates that are moderately biased either upward or downward.

Thirdly, for the RMSE of the fi xed effects, an indicator of the 
accuracy of the estimates, the results revealed that the REML 
method performed slightly worse than the RB method, particularly 
when the assumption of normally distributed residuals did not 
hold. For the variance terms, however, the RB method did not 
offer a systematic improvement over the REML method in terms 
of RMSE. Again as expected, the difference in the RMSE between 
normal and exponential distributions was larger under REML than 
under RB. Thus, the results of this study suggest that the choice 
of procedure rests, in part, on a priori information about the shape 
of the population distribution. Techniques for evaluating the 
tenability of the model assumptions can be found in Snijders and 
Berkhof (2008).

Consequently, the non-parametric RB approach provides a 
robust alternative to the likelihood-based methods which could be 
used in preference to the ML/REML methods. This is especially 
true when it is likely that data depart from normality and the 
variances across clusters are heterogeneous. However, for a very 
small group size, the bootstrap resampling methods should be 
used with caution. For this reason, in future research, it would 

be informative to examine the performance of the linear model, 
using techniques that allow distributions of error terms other than 
the normal, and relax the requirement of constant variability (e.g., 
generalized linear models). Another question that remains open 
here is how the slope-intercept correlation affects performance of 
methods. The correlation between the two random effects is set at 
0 in the simulation, which is a very special case of real data.

To conclude, we note that researchers face two problems when 
dealing with the bootstrap method. The fi rst problem is the lack 
of an automated option for performing bootstrapping with the 
popular software packages, which requires programming some 
macros. Unfortunately, as Roberts and Fan (2004) noted, this can 
be a daunting task for investigators who do not have the skills, 
knowledge, or interest required to carry out it. The second problem 
is the computational load needed to obtain accurate results. For 
example, model fi t by REML takes 4 seconds on a Workstation 
dual processor 3.0 GHz versus 15 minutes using 1000 bootstrap 
samples. If we add that it is common practice in multilevel 
modeling to compare the adequacy of different models rather than 
simply evaluating the fi t of a single model in isolation, the problem 
becomes even more severe. Assuming heterogeneity of variance 
across groups, usually due to an interaction of treatments with some 
unspecifi ed subject characteristics, we recommended using a hybrid 
modeling strategy, in which likelihood-based selection criteria are 
used in the model exploration phase, remembering that the variance 
components are generally underestimated) and bootstrap methods 
are used to report the fi nal inferential results. Model specifi cation 
may include semi-automatic search procedures, such as information 
criteria, and procedures that are more subjective, such as collapsing 
categorical predictors based on the observed relationship with the 
outcome (Vallejo, Arnau, Bono, Fernández, & Tuero-Herrero, 
2010; Vallejo, Fernández, Livacic-Rojas, & Tuero-Herrero, 2011b; 
Vallejo, Tuero-Herrero, Núñez, & Rosário, in press). 
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