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The Standards for Educational and Psychological Testing 
(American Educational Research Association [AERA], American 
Psychological Association, & National Council on Measurement 
in Education, 1999) list fi ve sources of evidence to support the 
interpretations and proposed uses of test scores: evidence based 
on test content, response processes, internal structure, relations 
to other variables, and consequences of testing. According to the 
Standards, evidence based on internal structure, which is the focus 
of this paper, pertains to “the degree to which the relationships 
among test items and test components conform to the construct on 
which the proposed test score interpretations are based” (p. 13). 

There are three basic aspects of internal structure: 
dimensionality, measurement invariance, and reliability. When 
assessing dimensionality, a researcher is mainly interested in 
determining if the inter-relationships among the items support 
the intended test scores that will be used to draw inferences. For 
example, a test that intends to report one composite score should 
be predominately unidimensional. For measurement invariance, 
it is useful to provide evidence that the item characteristics 

(e.g., item discrimination and diffi culty) are comparable across 
manifest groups such as sex or race. Lastly, reliability indices 
provide evidence that the reported test scores are consistent across 
repeated test administrations. The purpose of the present paper is 
to describe basic methods for providing evidence to support the 
internal structure of a test (e.g., achievement tests, educational 
surveys, psychological inventories, or behavioral ratings) with 
respect to assessing dimensionality, measurement invariance, and 
reliability. 

Assessing dimensionality
 
Assessing test dimensionality is one aspect of validating 

the internal structure of a test. Factor analysis is a common 
statistical method used to assess the dimensionality of a set of 
data (Bollen, 1989; Brown, 2006; Kline, 2010; Thompson, 2004). 
There are several factor analytic methods available for analyzing 
test dimensionality; however, this paper will focus solely on 
confi rmatory factor analysis, which is the most comprehensive 
means for comparing hypothesized and observed test structures. 

Confi rmatory factor analysis
 
Confi rmatory factor analysis (CFA) is a type of structural 

equation model (SEM) that examines the hypothesized 
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relationships between indicators (e.g., item responses, behavioral 
ratings) and the latent variables that the indicators are intended 
to measure (Bollen, 1989; Brown, 2006; Kline, 2010). The latent 
variables represent the theoretical construct in which evidence is 
collected to support a substantive interpretation. In comparison to 
exploratory factor analysis (EFA), a basic feature of CFA is that 
the models are specifi ed by the researcher a priori using theory 
and often previous empirical research. Therefore, the researcher 
must explicitly specify the number of underlying latent variables 
(also referred to as factors) and which indicators load on the 
specifi c latent variables. Beyond the attractive feature of being 
theoretically driven, CFA has several advantages over EFA such 
as its ability to evaluate method effects and examine measurement 
invariance. 

CFA provides evidence to support the validity of an internal 
structure of a measurement instrument by verifying the 
number of underlying dimensions and the pattern of item-to-
factor relationships (i.e., factor loadings). For example, if the 
hypothesized structure is not correct, the CFA model will provide 
poor fi t to the data because the observed inter-correlations among 
the indictors will not be accurately reproduced from the model 
parameter estimates. In this same vein, CFA provides evidence 
of how an instrument should be scored. If a CFA model with only 
one latent variable fi ts the data well, then that supports the use of a 
single composite score. In addition, if the latent structure consists 
of multiple latent variables, each latent variable may be considered 
a subscale and the pattern of factor loadings indicates how the 
subscores should be created. 

If the multi-factor model fi ts the data well, and the construct is 
intended to be multidimensional, then that is evidence supporting 
the internal structure of the measurement instrument. Furthermore, 
for multi-factor models, it is possible to assess the convergent 
and discriminant validity of theoretical constructs. Convergent 
validity is supported when indicators have a strong relationship to 
the respective underlying latent variable. Discriminant validity is 
supported when the relationship between distinct latent variables is 
small to moderate. In fact, CFA can be used to analyze multitrait-
multimethod (MTMM; Campbell & Fisk, 1959) data (Kenny, 
1976; Marsh, 1989). 

Three sets of parameters are estimated in a CFA model. For one, 
the factor loadings, which represent the strength of the relationship 
between the indicator and its respective latent variable and may 
be considered a measure of item discrimination, are estimated. 
In CFA, the factor loadings are fi xed to zero for indicators that 
are not hypothesized to measure a specifi c latent variable. When 
standardized, and no cross-loadings exist (i.e., each indicator loads 
on one latent variable), the factor loadings may be interpreted as 
correlation coeffi cients. The variance and covariance coeffi cients 
for the latent variables are also estimated. However, the variance 
for each latent variable is often fi xed to one to establish the scale 
of the latent variable. Fixing the variance for each latent variable 
to one produces a standardized solution. Lastly, the variance and 
covariance coeffi cients for the measurement errors (i.e., unique 
variance for each indicator) are estimated. When the measurement 
errors are expected to be uncorrelated, the covariance coeffi cients 
are fi xed to zero. 

To examine the internal structure of a measurement instrument, 
the CFA model is evaluated for model fi t and the magnitude of 
the factor loadings and correlations among the latent variables 
are examined. Model fi t determines if the hypothesized model 

can reproduce the observed covariance matrix (i.e., covariance 
matrix for the indicators) using the model parameter estimates. 
If the model is specifi ed incorrectly (e.g., some indicators load 
on other latent variables) then the model will not fi t the data well. 
Although there are several approaches to assess model fi t, such 
as hypothesis testing, the most common method uses goodness-
of-fi t indices. There are a plethora of goodness-of-fi t indices 
available for a researcher to use to judge model fi t (see Bollen, 
1989; Hu & Bentler, 1999). It is advisable to use a few of the 
indices in evaluating model fi t. Some of the more commonly used 
indices are the comparative fi t index (CFI), Tucker-Lewis index 
(TLI), root mean square error of approximation (RMSEA), and 
standardized root mean square residual (SRMR). Suggested cutoff 
values are available to help researchers determine if the model 
provides adequate fi t to the data (e.g., See Hu & Bentler, 1999). A 
model that does not fi t the data well must be re-specifi ed before 
interpreting the parameter estimates. Although there are numerous 
CFA models that one can fi t to the sample data, in this paper we 
describe and illustrate the increasingly popular bifactor model.

Bifactor model

The bifactor model (also referred to as the nested or general-
specifi c model) fi rst introduced by Holzinger and Swineford (1937) 
has seen a drastic increase in popularity within the SEM and item 
response theory (IRT) literature over the past few years. Once 
overshadowed by alternative multidimensional models, such as the 
correlated-factors and second-order models, advances in parameter 
estimation, user-friendly software, and novel applications (e.g., 
modeling differential item functioning (Fukuhara & Kamata, 
2011; Jeon, Rijmen, & Rabe-Hesketh, 2013), identifying local 
dependence (Liu & Thissen, 2012), evaluating construct shift 
in vertical scaling (Li & Lissitz, 2012), to name a few) have led 
to a renewed interest in the model. However, applications of the 
bifactor model have been limited in the fi eld of psychology, which 
some have suggested is due to a lack of familiarity with the model 
and a lack of appreciation of the advantages it provides (Reise, 
2012). Therefore, the objective of the current section is to provide a 
general description of the confi rmatory canonical bifactor model, 
note some of the advantages and limitations associated with the 
model, and discuss techniques for determining model selection 
when comparing unidimensional and bifactor models.

General description of bifactor model. The bifactor model is a 
multidimensional model that represents the hypothesis that several 
constructs, as indicated each by a subset of indicators, account for 
unique variance above and beyond the variance accounted for by 
one common construct that is specifi ed by all indicators. More 
specifi cally, this model is composed of one general and multiple 
specifi c factors. The general factor can be conceptualized as the 
target construct a measure was originally developed to assess, 
and accounts for the common variance among all indicators. In 
contrast, specifi c factors pertain to only a subset of indicators that 
are highly related in some way (e.g., content subdomain, item type, 
locally dependent items, etc.), and account for the unique variance 
among a subset of indicators above and beyond the variance 
accounted for by the general factor. Within the confi rmatory model, 
each indicator loads on the general factor and on one and only 
one specifi c factor. Allowing indicators to cross-load on multiple 
specifi c factors leads to questionable parameter estimates, and is 
limited by the small degrees of freedom available in the model. As 



Joseph Rios and Craig Wells

110

the specifi c factors are interpreted as the variance accounted for 
above and beyond the general factor, an orthogonal (uncorrelated) 
assumption is made for the relationships between the general and 
specifi c factors. Furthermore, the covariances among the specifi c 
factors are set to 0 to avoid identifi cation problems (Chen, Hayes, 
Carver, Laurenceau, & Zhang, 2012). The residual variances of 
the indicators are interpreted as the variance unaccounted for by 
either the general or specifi c factors (see Figure 1). Within the 
fi eld of psychology, this model has been applied to study a number 
of constructs, such as depression (Xie et al., 2012), personality 
(Thomas, 2012), ADHD (Martel, Roberts, Gremillion, von Eye, 
& Nigg, 2011), and posttraumatic stress disorder (Wolf, Miller, & 
Brown, 2011).

Advantages of the bifactor model. The bifactor model possesses 
the following four advantages over other multidimensional models 
(e.g., the second-order model): 1) the domain specifi c factors can be 
studied independently from the general factor, 2) the relationship 
between the specifi c factors and their respective indicators can be 
evaluated, 3) invariance can be evaluated for both the specifi c and 
general factors independently, and 4) relationships between the 
specifi c factors and an external criterion can be assessed above 
and beyond the general factor (Chen, West, & Sousa, 2006). The 
ability to study the specifi c factors independently from the general 
factor is important in better understanding theoretical claims. 
For example, if a proposed specifi c factor did not account for a 
substantial amount of variance above and beyond the general factor, 
one would observe small and non-signifi cant factor loadings on the 
specifi c factor, as well as a non-signifi cant variance of the specifi c 
factor in the bifactor model. This would notify the researcher that 
the hypothesized specifi c factor does not provide unique variance 
beyond the general factor, which would call for a modifi cation of 
the theory and the test specifi cations. A closely related advantage 
of the bifactor model is the ability to directly examine the 
strength of the relationship between the specifi c factors and their 
respective indicators. Such an assessment provides a researcher 

with information regarding the appropriateness of using particular 
items as indicators of the specifi c factors. If a relationship is weak, 
one can conclude that the item may be appropriate solely as an 
indicator of the general factor.

The last two advantages deal directly with gathering validity 
evidence to support a theoretical rationale. More specifi cally, 
within the bifactor model one has the ability to evaluate invariance 
for both the specifi c and general factors independently. This would 
allow researchers to directly compare means of the latent factors 
(both the specifi c and general factors), if scalar invariance is met, 
across distinctive subgroups of examinees within the population 
(See Levant, Hall, & Rankin, 2013). Lastly, the bifactor model 
is advantageous in that one can study the relationships between 
the specifi c factors and an external criterion or criteria above and 
beyond the general factor. This application of the bifactor model 
could be particularly attractive for gathering evidence based on 
relations to other variables (convergent and discriminant evidence, 
as well as test-criterion relationships) for multidimensional 
measures. 

Limitations of the bifactor model. Although the bifactor model 
provides numerous advantages, it is also has some limitations. As 
noted by Reise, Moore, and Haviland (2010), there are three major 
reasons for limiting the application of the bifactor model in practice: 
1) interpretation, 2) model specifi cation, and 3) restrictions. The 
fi rst major limiting factor for practitioners is relating the bifactor 
model to their respective substantive theories. More specifi cally, 
the bifactor model assumes that the general and specifi c factors are 
orthogonal to one another, which may be too restrictive or make 
little sense in adequately representing a theoretical model. For 
example, if one were studying the role of various working memory 
components on reading skills, it would be diffi cult to assume the 
relationship between these two constructs is orthogonal. Instead, 
competing multidimensional models, such as the correlated-traits 
or second-order models would be more attractive as the restrictive 
orthogonality assumption is not required. This is one of the major 
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Figure 1. Bifactor model path diagram
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reasons why the bifactor model has seen little application to non-
cognitive measures.

A closely related limitation of the bifactor model is model 
specifi cation. Reise et al. (2010) advised that for stable parameter 
estimation one should have at least three group factors, for each 
group factor there should be at least three indicators, and the 
number of indicators should be balanced across all group factors. 
The question then becomes, can I still apply the bifactor model 
if my theoretical representation is lacking in one of these areas? 
The answer is “it depends.” For one, within a SEM framework one 
should always have at least three indicators per latent construct 
for identifi cation purposes. Furthermore, the requirement of 
possessing at least three specifi c factors holds true in the second-
order model, where it is required that there are at least three fi rst-
order factors that load onto the second-order factor (Chen, Hayes, 
Carver, Laurenceau, & Zhang, 2012). If these fi rst two conditions 
are not met, one should not apply the bifactor model. In terms of 
the last condition, having an unequal number of indicators across 
specifi c factors will impact reliability estimates of the subscales; 
however, keeping this mind, one can still fi t the model. 

Lastly, the bifactor model requires an additional restrictive 
assumption beyond orthogonality, which is that each indicator load 
on one general factor and one and only one specifi c factor. Allowing 
items to cross-load on multiple specifi c factors would lead to 
untrustworthy item parameter estimates. Such a restriction on the 
structure of the multidimensionality may limit the application of the 
bifactor model. However, this is one of the major reasons why Reise 
(2012) promoted the use of exploratory bifactor analysis, which 
allows for indicators to cross-load on specifi c factors (For a detailed 
discussion on exploratory bifactor analysis see Jennrich & Bentler, 
2011). Such analyses would allow researchers to better understand 
the structure of the data before applying confi rmatory procedures, 
which is particularly vital with the restrictive assumptions that are 
inherent in the confi rmatory canonical bifactor model. 

Model selection. Considering plausible rival hypotheses is 
an important part of gathering evidence to support the validity 
of scored-based inferences (American Educational Research 
Association, American Psychological Association, & National 
Council on Measurement in Education, 1999). In terms of evidence 
based on internal structure, rival hypotheses include alternative 
theoretical models. For example, when a measure is hypothesized 
to compose one general and multiple specifi c factors, as is the case 
with the bifactor model, it is imperative to consider alternative score 
interpretations. One such alternative hypothesis is that reporting 
separate scores for the general and specifi c factors is unnecessary 
as the score variance can be captured by one prominent dimension. 
That is, although a model may demonstrate adequate model fi t for 
a multidimensional model, practical and technical considerations 
(e.g., lack of adequate reliability on the subscales, desire to employ 
unidimensional IRT applications, etc.) may dictate that reporting 
a unidimensional model is “good enough” or preferred. In this 
case, one would be comparing two competing models, the bifactor 
and unidimensional models. To determine which model best 
represents the sample data the following four techniques will be 
discussed: 1) comparison of model fi t statistics, 2) ratio of variance 
accounted for by the general factor over the variance accounted for 
by the specifi c factors, 3) the degree to which total scores refl ect 
a common variable, and 4) the viability of reporting subscale 
scores as indicated by subscale reliability. An empirical example 
is provided following a discussion of these four techniques.

Traditionally within the SEM framework, model fi t statistics 
are employed to determine the adequacy of a model. For example, 
to determine the fi t of confi rmatory models, heuristic guidelines 
are applied to popular indices, such as CFI, TLI, RMSEA, and 
SRMR. After obtaining model fi t for both unidimensional and 
bifactor models, one can directly compare the two competing 
models via the change in CFI (ΔCFI) index as the unidimensional 
model is hierarchically nested within the bifactor model (Reise, 
2012). This index is generally preferred to the traditional Chi-
square difference test as ∆CFI has been demonstrated to provide 
stable performance with various conditions, such as sample size, 
amount of invariance, number of factors, and number of items 
(Meade, Johnson, & Braddy, 2008). In contrast, the Chi-square 
statistic is notoriously known for being highly sensitive to sample 
size. The ∆CFI is calculated as:

 ∆CFI = CFI
M1

 - CFI
MO

 (1)

where CFI
M1

 is equal to the CFI value obtained for model 1, 
and CFI

MO
 is equal to the CFI value obtained for model 0. 

Based on simulation analyses, Cheung and Rensvold (2002) 
have recommended that a ∆CFI ≤ .01 supports the invariance 
hypothesis. 

This approach for assessing whether data are unidimensional 
“enough” is quite popular within the SEM framework (Cook & 
Kallen, 2009). However, such an approach does not shed light 
on the amount of variance accounted for by the general factor 
over that accounted for by the specifi c factors nor does it provide 
information regarding the viability of reporting a composite 
score or separate scores on the specifi c factors. Use of fi t indices 
limits one’s assessment of determining the technical adequacy 
of reporting multidimensional scores that may be adequately 
represented by a unidimensional model. This assertion is refl ected 
in recent work by Reise, Scheines, Widaman, and Haviland (2013) 
who have demonstrated that use of fi t indices to determine whether 
data are unidimensional “enough” is not optimal if the data have 
a multidimensional bifactor structure. This research illustrated 
that if item response data are bifactor, and those data are forced 
into a unidimensional model, parameter bias (particularly in 
structural parameters that depend on loading bias) is a function 
of the expected common variance (ECV) and percentage of 
uncontaminated correlations (PUC), whereas model fi t indices are 
a poor indicator of parameter bias. ECV, which provides a ratio of 
the strength of the general to group factors, is defi ned as follows:

 

 

ECV =
G
2

i=1
IG

G
2
+ s1

2
+ s2

2
+…+ sn

2
i=1
Isn

i=1
Is2

i=1
Is1

i=1
IG

 (2)

where I
G 

= total number of items loading onto the general factor, I
s1 

= the number of items loading on specifi c factor 1, I
s2 

= the number 
of items loading on specifi c factor 2, I

sn 
= the number of items 

loading on specifi c factor n, λ2
G
= the squared factor loadings of the 

general factor, λ2
S1 

= the squared factor loadings of specifi c factor 
1, λ2

S2 
= the squared factor loadings of specifi c factor 2, and λ2

Sn 
= 

the squared factor loadings of specifi c factor n. 
As the ECV value increases to 1, there is evidence to suggest 

that a strong general dimension is present in the bifactor data. 
Although this value can be used as an index of unidimensionality, 
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its interpretation is moderated by PUC. That is, PUC moderates 
the effects of factor strength on biasing effects when applying 
a unidimensional model to bifactor data (Reise, Scheines, 
Widaman, & Haviland, 2013). PUC can be defi ned as the number 
of uncontaminated correlations divided by the number of unique 
correlations: 

PUC =

IG IG 1( )
2

Is1 Is1 1( )
2

+
Is2 Is2 1( )

2
+…+

Isn Isn 1( )
2

IG IG 1( )
2  (3)

where I
G 

= the number of items loading on the general factor, 
I

s1
=the number of items loading on specifi c factor 1, I

s2 
= the 

number of items loading on specifi c factor 2, I
sn 

= the number of 
items loading on specifi c factor n. When PUC values are very 
high (>.90), unbiased unidimensional estimates can be obtained 
even when one obtains a low ECV value (Reise, 2012). More 
specifi cally, when the PUC values are very high, the factor loadings 
of the unidimensional model will be close to those obtained on the 
general factor in the bifactor model.

In addition to ECV and PUC values, researchers can 
compute reliability coeffi cients to determine if composite 
scores predominately refl ect a single common factor even when 
the data are bifactor. As noted by Reise (2012), the presence of 
multidimensionality does not dictate the creation of subscales 
nor does it ruin the interpretability of a unit-weighted composite 
score. Instead, researchers must make the distinction between 
the degree of unidimensionality and the degree to which total 
scores refl ect a common variable. This latter assessment can 
be accomplished by computing coeffi cient omega hierarchical, 
which is defi ned as:

 

 

H =
iG( )

2

iG( )
2
+ iS1( )

2
+ iS2( )

2
+…+ iSn( )

2
+ i

2

 (4)

where λ
iG

= the factor loading for item i on the general factor, λ
iS1

= 
the factor loading for item i on specifi c factor 1, λ

iS2 
= the factor 

loading for item i on specifi c factor 2, λ
iSn 

= the factor loading 
for item i on specifi c factor n, and θ 2

i
= the error variance for 

item i. Large ω
H
 values indicate that composite scores primarily 

refl ect a single variable, thus providing evidence that reporting a 
unidimensional score is viable. Lastly, if this evaluation proves to 
be inconclusive one can compute the reliability of subscale scores 
once controlling for the effect of the general factor. This reliability 
coeffi cient, which Reise (2012) termed omega subscale (ω

s
), can 

be computed as follows:

s =
iSn( )

2

iG( )
2
+ iSn( )

2
+ i

2

 (5)

High values indicate that the subscales provide reliable 
information above and beyond the general factor, whereas low 
values suggest that the subscales are not precise indicators of the 
specifi c factors. 

An illustration

To illustrate the basic concepts of using CFA to assess 
internal structure and model selection, we examined a survey 
measuring student engagement (SE). The survey was comprised 
of 27 four-point Likert-type items and was administered to 1,900 
participants. Based on theory and previous research, the survey was 
hypothesized to measure four latent variables: self-management of 
learning (SML), application of learning strategies (ALS), support of 
classmates (SC), and self-regulation of arousal (SRA). Nine of the 
items loaded on SML, ten items loaded on ALS, six items loaded 
on SC, and three items loaded on SRA. All four latent variables as 
well as the measurement errors were expected to be uncorrelated 
in the measurement model. Alternatively, a unidimensional model 
was also fi t to the sample data to determine whether the general 
student engagement dimension could account for the majority of 
the score variance. Parameter estimation was conducted in Mplus, 
version 5 (Muthén & Muthén, 2007) applying the weighted least 
squares with mean and variance adjustment (WLSMV) estimator 
to improve parameter estimation with categorical data. Adequate 
model fi t was represented by CFI and TLI values >.95, as well as 
an RMSEA value <.06 (Hu & Bentler, 1999).

Table 4 provides the standardized factor loading estimates 
for both the unidimensional and bifactor models. Results 
demonstrated inadequate model fi t to the sample data for the 
unidimensional model as indicated primarily by a small CFI value, 
CFI= .80, TLI= .97, and RMSEA= .07. In contrast, model fi t was 
drastically improved when fi tting the bifactor model, CFI= .94, 
TLI= .99, RMSEA= .04, and a ΔCFI index of .14. Examination 
of the factor loadings (Table 1) demonstrated statistically 
signifi cant factor loadings of moderate strength for items 7 and 
9 on SML, items 10, 12, and 16 on ALS, items 1, 20, 22, and 27 
on SC, and all items on SRA. These fi ndings suggest that the 
specifi c factors accounted for a signifi cant amount of variance 
for many of the items above and beyond the variance accounted 
for by the general factor. Based solely on model fi t statistics, one 
would conclude that the data were not unidimensional “enough” 
and that a bifactor model best represented the sample data for 
the models evaluated. However, as mentioned before, model fi t 
statistics do not provide information related to the parameter 
bias that comes about by representing bifactor data with a 
unidimensional representation.

The fi rst step in examining parameter bias that is brought about 
by applying a unidimensional model to bifactor data is to evaluate 
ECV and PUC. In this example, the sum of the squared factor 
loadings was 9.13, 0.40, 0.63, 0.91, and 0.73 for the SE, SML, ALS, 
SC, and SRA factors, respectively (see Table 1). Applying these 
values to equation 2, ECV was calculated as follows:

 ECV =
9.13

9.13+ 0.40 + 0.63+ 0.91+ 0.73
= .79

 (6)

The results demonstrated that the ratio of the strength of the 
general to group factors was .79, which suggested that a very 
strong general factor was present. However, as mentioned, the 
interpretation of ECV is mediated by PUC. In this example, the 
number of unique correlations was [(27×26)/2] = 351. As there 
were 8, 10, 6, and 3 items that loaded on each specifi c factor, 
respectively, the number of correlations for items within group 
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factors was [((8×7)/2) + ((10×9)/2)+ ((6×5)/2)+ ((3×2)/2)] = 91. 
Therefore, the number of uncontaminated correlations was 351-
91= 260, and the proportion of uncontaminated correlations was 
260/351= .74, which is moderate-high with extreme values being 
represented by anything >.90. 

Although the PUC value was not as high as one would hope, its 
value is dependent on the number of group factors. For example, 
higher PUC values would be obtained if increasing the number of 
group factors from 3 to 9, which would produce [((3×2)/2) × 9]= 27 
uncontaminated correlations and a proportion of uncontaminated 
correlations of (324/351)= .92. Nevertheless, in comparing the 
factor loadings between the general factor from the bifactor 
model and the unidimensional factor loadings there was a high 
degree of similarity, r= .88, which demonstrated that the variance 
accounted for by the general factor was impacted minimally with 
the inclusion of the specifi c factors (see Table 1). Such a fi nding 

in combination with the ECV and PUC results suggested that a 
strong general factor was present in the bifactor data. 

The next step was to evaluate the degree to which a total score 
refl ected a common variable. This was accomplished by fi rst 
computing the squared sums of the factor loadings, which were 
244.61, 1.30, 4.37, 4.58, and 1.90 for the SE, SML, ALS, SC, and 
SRA factors, respectively. In addition, the sum of the residual 
variance across all 27 items was equal to 15.23. These values were 
then applied to equation 5 as follows:
  

H =
244.61

244.61+1.30 + 4.37 + 4.58 +1.90 +15.23
= .90

 (7)

The results demonstrated an omega hierarchical of .90, which 
suggested that a very high amount of the variance in summed 
scores could be attributed to the single general factor. The last 
step of the analysis was to compute the reliability of the subscales 
by controlling for the general factor variance. The omega subscale 
reliabilities were calculated for the four specifi c factors as 
follows:  

 

SML =
1.30

244.61+1.30 +15.23
= .004

 (8)
 

ALS =
4.37

244.61+ 4.37 +15.23
= .02

 (9)
 

SC =
4.58

244.61+ 4.58 +15.23
= .02

 (10)
 

SRA =
1.90

244.61+1.90 +15.23
= .007

 (11)

As can be seen, the reliabilities of the scores for the specifi c 
factors after controlling for the variance accounted for by the 
general factor were extremely low. Such low reliability estimates 
demonstrate that reporting scores on the specifi c factors would 
provide unreliable information. 

In summarizing the results of assessing the unidimensional 
and bifactor models tested in this example, one would conclude 
that although unique factors associated with the individual scales 
were present, the information that they provided was of negligible 
consequence. That is, from a practical standpoint, reporting 
multidimensional scores would be invalid as the technical 
adequacy was lacking, due to a strong general factor, a high 
amount of variance being accounted for in summed scores by the 
general factor, and extremely low reliability estimates for scores 
on the specifi c factors. This example demonstrates the need for 
researchers to go beyond the use of model fi t statistics in deciding 
whether to employ a multidimensional representation as often a 
unidimensional model can be more adequate. 

Assessing measurement invariance

One societal concern related to measurement is the lack of test 
fairness for distinct subgroups within the population. Although 
the evaluation of fairness incorporates legal, ethical, political, 
philosophical, and economic reasoning (Camilli, 2006), from 

Table 1
Factor loadings for unidimensional and bifactor models

Unidimen-
sional

Bifactor

Item λ
SE

λ
SE

λ
SML

λ
ALS

λ
SC

λ
SRA

θ2

1 .59 .52 .53 .45

2 .54 .55 .07 .69

3 .56 .56 .10 .68

4 .53 .50 .71 .25

5 .55 .54 .17 .68

6 .61 .60 .33 .53

7 .61 .59 .47 .43

8 .56 .55 .21 .65

9 .62 .60 .38 .49

10 .57 .54 .36 .58

11 .54 .56 -.03 .69

12 .55 .51 .46 .53

13 .50 .47 .28 .70

14 .55 .53 .34 .61

15 .61 .61 .11 .62

16 .58 .55 .36 .57

17 .60 .59 .18 .62

18 .61 .63 -.04 .61

19 .56 .58 .00 .67

20 .65 .61 .31 .53

21 .65 .65 .07 .57

22 .65 .59 .47 .44

23 .68 .69 .09 .51

24 .65 .66 .06 .56

25 .64 .64 .11 .57

26 .61 .60 .17 .61

27 .68 .62 .48 .39

(∑λ2) 9.13 .40 .63 .91 .73

(∑λ) 244.61 1.30 4.37 4.58 1.90

Note: λ
SE 

= factor loading for the student engagement factor, λ
SML 

= factor 
loading for the self-management of learning factor, λ

ALS 
= factor loading for the 

application of learning strategies factor, λ
SC 

= factor loading for the support of 
classmates factor, λ

SRA 
= factor loading for the self-regulation of arousal factor, 

and θ2= item residual variance (only reported for bifactor model due to reliability 
coeffi cient calculations)
<.05
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a psychometric perspective, one can defi ne fairness as a lack of 
systematic bias (measurement invariance). Bias is a technical term 
that comes about when there are systematic defi ciencies in the 
test that lead to differential interpretation of scores by subgroup. 
From this perspective, the main concern in evaluating bias is to 
determine whether knowledge of an examinee’s group membership 
infl uences the examinee’s score on the measured variable (e.g., 
an item, subdomain, or test), given the examinee’s status on the 
latent variable of interest (Millsap, 2011). If group membership 
is found to impact score-based inferences, one would conclude 
that the measure contains construct-irrelevant variance. If not, 
one would conclude that the measure demonstrates equivalence 
(invariance) across subgroups. Therefore, for a test to be fair (from 
a psychometric perspective) one must demonstrate measurement 
invariance across all distinctive subgroups being evaluated. This 
assertion is refl ected in Standard 7.1 of the 1999 Standards, which 
states:

“…the same forms of validity evidence collected for the 
examinee population as a whole should also be collected for 
each relevant subgroup” (American Educational Research 
Association, American Psychological Association, & National 
Council on Measurement in Education, 1999, p. 80).

There are numerous statistical approaches for assessing 
measurement invariance. These methods can be categorized 
into three distinctive groups: 1) linear measurement models, 2) 
non-linear measurement models, and 3) observed score methods 
(Millsap, 2011). Furthermore, these approaches can be broken 
down into methods that examine invariance at the scale- and item-
levels (Zumbo, 2003). Scale-level analyses are primarily concerned 
with the degree of invariance observed within common factor 
analytic models across groups. In contrast, item-level analyses 
(differential item functioning (DIF)) evaluate invariance for each 
item individually. The literature on DIF is extensive and spans 
more than 40 years. As a result, the main focus of this section will 
be on describing the multiple-group confi rmatory factor analytic 
method for assessing invariance at the scale-level. For a general 
introduction to DIF, as well as the various methods available for 
analyzing item-level invariance, the reader is referred to Sireci and 
Rios (2013).

Multiple Group Confi rmatory Factor Analysis (MGCFA) 

MGCFA is a theory-driven method used to evaluate formal 
hypotheses of parameter invariance across groups (Dimitrov, 
2010). MGCFA is advantageous to use when establishing 
construct comparability as it allows for: 1) simultaneous model 
fi tting across multiple groups, 2) various levels of measurement 
invariance can be assessed, 3) the means and covariances of the 
latent constructs’ are disattenuated (i.e., controls for measurement 
error), and 4) direct statistical tests are available to evaluate 
cross-group differences of the estimated parameters (Little 
& Slegers, 2005). Conducting MGCFA requires a number of 
hierarchical steps, which depend on the desired inferences that 
the researcher is interested in. These hierarchical steps can be 
described as fi rst establishing a baseline model separately for 
each group, and then systematically evaluating hierarchically 
nested models to determine the level of invariance present across 
groups. This systematic process is known as sequential constraint 

imposition as model parameters across groups are allowed to be 
freely estimated with greater constraints on the parameters being 
placed as adequate model fi t for less restricted models is obtained. 
Comparison of hierarchically nested models can be conducted via 
the ∆CFI index.

Levels of measurement invariance

There are various levels of invariance; however, for the purposes 
of this paper, we will only discuss confi gural, metric, scalar, 
and strict factorial invariance; however, it should be noted that 
there are other forms of equivalence, such as invariance of item-
uniqueness (See Dimitrov, 2010). The most basic and necessary 
condition for group comparisons is confi gural invariance, 
which assesses whether there is conceptual equivalence of the 
underlying variable(s) across groups (Vandenberg & Lance, 
2000). From a factor analytic perspective, confi gural invariance 
is refl ected in the use of identical indicators to measure the same 
latent construct(s) of interest across groups. A more restrictive 
form of invariance is metric equivalence, which assumes both 
confi gural invariance and equivalent strengths between the 
indicators and latent variable (factor loadings) across groups. 
Attainment of metric equivalence denotes equal measurement 
units of the scale designed to measure the latent construct 
across groups. This form of equivalence allows for indirect 
comparisons as the score intervals are equal across groups but 
the measurement units do not share the same origin of the scale. 
As a result, direct comparisons of group means are not valid. To 
make direct comparisons of latent group means, it is necessary 
to attain scalar equivalence. This form of invariance subsumes 
both confi gural and metric equivalence, as well as assumes that 
the scales of the latent construct possess the same origin, which 
is indicated by equal intercepts across groups. Lastly, when one 
is concerned with the equivalence of covariances among groups 
for a number of latent factors within the model, strict factorial 
invariance is of interest. For a detailed example of conducting 
a scale-level measurement invariance analysis, the reader is 
referred to Dimitrov (2010).

Reliability: Internal consistency
 
Internal consistency reliability represents the reproducibility 

of test scores on repeated test administrations taking under the 
same conditions and is operationally defi ned as the proportion of 
true score variance to total observed score variance (Crocker & 
Algina, 1986). Although there are several methods for estimating 
reliability of a composite or subscale score such as split-half 
reliability, coeffi cient α (Cronbach, 1951) is arguably the most 
commonly used statistic. Cronbach (1951) demonstrated that 
coeffi cient α is the average of all possible split-half reliability 
values for a test and is computed as follows:
 

ˆ =
I

I 1
1

si
2

i=1

I

sx
2

 (12)

I represents the number of items; s2
i
 represents the variance of 

scores for item i; and s2
x
 represents the test score variance. 
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Despite the widespread use of coeffi cient α, it is not without 
its limitations. For example, in most cases when the measurement 
errors are uncorrelated (except for the tau-equivalent condition), 
coeffi cient α will often underestimate reliability (Crocker & 
Algina, 1987; Lord & Novick, 1968). When the measurement errors 
are correlated, for example due to method effects or items that 
share a common stimulus, coeffi cient α can either underestimate 
or overestimate reliability (Raykov, 2001). To address these 
limitations, CFA can be used to provide a more accurate estimate 
of reliability. Reliability can be estimated from the parameter 
estimates in a CFA model as follows:
 

Y =
i

i

2

i
i

2

+ VAR( i )+ 2 COV i , j( )
i, ji  (13)

λ represents the unstandardized factor loading; VAR(δ
i
) 

represents the measurement error variance; and COV(δ
i
,δ

j
) 

represents the covariance in measurement errors. Essentially, the 
numerator represents true score variance and equals the squared 
sum of the unstandardized factor loadings. The denominator 

represents the total observed score variance and includes the 
true score variance, error variance and any non-zero correlated 
measurement errors. 

To illustrate how to compute reliability using a CFA model, we 
utilized the factor loadings for a six item subscale (see Table 2). The 
reliability for a subscale can be computed using the model parameter 
estimates. For example, for this one subscale, the true variance 
equals the squared sum of the unstandardized factor loadings:
 
 (1.01 + 0.80 + 1.02 + 0.91 + 1.06 + 1.12)2 = 24.11 (14)

The total variance of the subscale is 
 

 24.11 + 0.53 + 0.70 + 0.51 + 0.61 + 0.47 + 0.41 = 26.81 (15)

Therefore, the reliability estimate based on the CFA model is 
24.11/26.81 = 0.90. In comparison to coeffi cient α, which equaled 
0.80 for the subscale, the reliability estimate based on the CFA 
model parameter estimates was larger most likely because the tau 
equivalence condition was not met. 

Conclusion

The need to gather evidence that supports the validity of 
score-based inferences is imperative from scientifi c, ethical, and 
legal perspectives. In this article we provided a general review 
of methodological procedures to evaluate one form of validity 
evidence, internal structure, by specifi cally focusing on assessment 
of dimensionality, measurement invariance, and reliability within 
a factor analytic framework. In addition, an overview of the 
bifactor model, as well as techniques that go beyond fi t indices 
for determining model selection, was illustrated. The methods 
outlined in this paper, when applied appropriately, will assist 
researchers in gathering evidence to strengthen the validity of 
intended scored-based inferences.

Table 2
Factor loadings to illustrate reliability estimation

Item Unstandardized  λ Standardized λ

1 1.01 0.70

2 0.80 0.53

3 1.02 0.71

4 0.91 0.62

5 1.06 0.73

6 1.12 0.76
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