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Abstract

Backgrounds: This study analyzes the effectiveness of different
information criteria for the selection of covariance structures, extending
it to different missing data mechanisms, the maintenance and adjustment
of the mean structures, and matrices. Method: The Monte Carlo method
was used with 1,000 simulations, SAS 9.4 statistical software and a
partially repeated measures design (p=2; q=5). The following variables
were manipulated: a) the complexity of the model; b) sample size; c)
matching of covariance matrices and sample size; d) dispersion matrices;
e) the type of distribution of the variable; f) the non-response mechanism.
Results: The results show that all information criteria worked well in
Scenario 1 for normal and non-normal distributions with heterogeneity
of variance. However, in Scenarios 2 and 3, all were accurate with the
ARH matrix, whereas AIC, AICCR and HQICR worked better with
TOEP and UN. When the distribution was not normal, AIC and AICCR
were only accurate in Scenario 3, more heterogeneous and unstructured
matrices, with complete cases, MAR and MCAR. Conclusions: In order
to correctly select the matrix it is advisible to analyze the heterogeneity,
sample size and distribution of the data.

Keywords: Information criteria, covariance structures, missing data,
sensitivity, repeated measures designs.

Resumen

Sensibilidad de cinco criterios de informacion para discriminar
estructuras de covarianza bajo pérdida de datos en diseiios de medidas
repetidas. Antecedentes: el presente trabajo analiza la efectividad
de distintos criterios de informacion para seleccionar estructuras de
covarianza extendiéndolo a diferentes mecanismos de pérdida de datos, la
mantencion y ajustes de las estructuras de medias y las matrices. Método:
se utilizé el método Monte Carlo con 1.000 simulaciones, el software
estadistico SAS 9.4 y un disefio de medidas parcialmente repetidas (p=2;
q=5). Las variables manipuladas fueron: a) complejidad del modelo; b)
tamaflo muestral; c) emparejamiento de las matrices de covarianza y
tamafio muestral; d) matrices de dispersion; e) forma de distribucion de
la variable; y f) mecanismo de no respuesta. Resultados: los resultados
muestran que todos los criterios de informacién funcionan bien en el
escenario | paradistribuciones normales y no normales con homogeneidad
y heterogeneidad de varianzas. Sin embargo, en los escenarios 2 y 3, todos
son precisos con la matriz ARH, aunque, AIC, AICCR y HQICR lo hacen
para TOEP y UN. Por otro lado, cuando la distribuciéon no es normal,
solo en el escenario 3 funcionan bien AIC y AICCR, matrices mds
heterogéneas y No Estructurada, con Casos Completo MAR y MCAR.
Conclusiones: en consecuencia, para seleccionar la matriz correctamente
se recomienda analizar la heterogeneidad, tamafio muestral y distribucién
de los datos.

Palabras clave: criterios de informacion, estructuras de covarianza, pérdida
datos, sensibilidad, disefios medidas repetidas.

Missing data affect data quality, analysis and subsequent
decision making (Leke & Marwala, 2019). According to Dong
and Peng (2013), missingness ranges in psychology and education
studies fluctuate between 16% and 48% (Enders, 2003; Peng et al.,
2006 in Dong & Peng, 2013) and, in repeated measures designs,
Liu (2016) indicates that they occur in 96% of cases and are a
major problem (Sullivan et al., 2017).

The inadequate treatment of missing data produces bias in
the results (Liu, 2016) because there are smaller samples, more
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heterogeneous variances and unbalanced designs (Vallejo et al.,
2019). This also affects the effect size, statistical power (Vallejo
et al., 2019; Vallejo et al., 2018; Ferndndez et al., 2018; Zhang
& Yuang, 2018), the predictive capacity of the model (Garson,
2020), the behavior of the information criteria (Vallejo et al., 2014;
Livacic-Rojas et al., 2013; Livacic-Rojas et al., 2017) and the
estimation of the parameters.

Focusing on the missingness process, Funatogawa and
Funatogawa (2019) note that the mechanisms can be classified
hierarchically on three levels: MCAR (the missingness mechanism
is not dependent on the process), MAR (the missingness mechanism
is dependent on observed responses and not on responses not
observed) and NMAR (the missingness mechanism is dependent
on responses not observed). Under MCAR, standard procedures
provide consistent estimators and, when the mechanism is MAR,
the missingness process does not need to be simultaneously
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modeled by probability methods because it can be factored in two
parts (measurement and missingness processes). In this context, the
maximum likelihood estimators (MLE) are consistent if the joint
distribution of the response vector is correctly specified. In this
regard, Little and Rubin (2020) point out that MLE are flexible,
they avoid the use of ad hoc methods and they allow the estimation
of variance even with missing data (see also in Molenberghs et al.,
2015; Yoo, 2013). In the opposite scenario, generalized equation
estimation (GEE) methods deliver biased estimators. Finally,
under NMAR, MLEs provide biased estimators as they are the
most complex mechanism, also affecting the prediction of patterns
of change in study variables over time (Liu, 2016). In turn, under
NMAR, the same author also notes that in longitudinal studies
ignoring the missing data generates biased results, erroneous
predictions and less mature statistical models than methods under
MAR.

In an attempt to resolve the above, Funatogawa et al., (2019)
indicate that in longitudinal designs procedures have been
developed to analyze responses over time, the types of effect or
covariates and their relationship. They also note that mutually
dependent responses require methods that consider the structural
configuration of the design based on correlations, the relationships
between variances and covariances, the sample size, the number
of measures and the relationship between them, because they
influence the structures of means, variances, covariances, the
(mixed or marginal) effects model and the method used for data
analysis (maximum likelihood or other).

Vallejo et al., (2010) compared the efficacy of several
information criteria to select nested covariance structures with
the likelihood ratio test (LRT) under three different scenarios
(maintaining constant matrix and mean adjustment; constant mean
and matrix adjustment; mean and matrix adjustment), in repeated
measures designs (q=6), with three covariance matrices [random
coefficients (RC), first order auto-regressive heterogeneous
(ARH1), unstructured (UN)], complete data, two groups (p=2;
n,=30; n,=60), with positive and negative relationship between
the matrices and group sizes, normal (y = 0; y,=0) and non-normal
distributions [Laplace (y,= 0; y,=3); exponential (y,= 2; y,=6) and
lognormal (y,= 6.18; y,=110.94)] and assuming the data generating
process to be true. They found that the selection criteria work better
when the matrices are more complex, while LRT (based on full
maximum likelihood, FML) works better than the rest, although it
is less efficient when based on the restricted maximum likelihood
method (REML).

In turn, Vallejo et al., (2011a) analyzed the effectiveness of
several information criteria (AIC, AICc, BIC, CAIC, HQIC) in
repeated measures designs (additive and non-additive models of
four and eight measures), under three scenarios with mean models
and covariance structures, (identical to the previous study),
data with normal and non-normal distribution (exponential),
four autoregressive covariance matrices [autoregressive (AR),
ARHI1, Toeplitz (TOEP) and UN], complete data and monotone
missingness (MAR). Regardless of the estimation method used,
the criteria work best when the group size and repeated measures
increase. However, with missing data and lack of normality, their
efficiency decreases, although it improves as the sample size
increases.

With a slightly different scope to the two previous studies,
Vallejo et al., (2011b) analyzed the error rates of type I and power
by four methods [based on comparing the unstructured covariance
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structure, the true covariance structure (CPM-U vs. CPM-T),
the multiple imputation method (based on generalized estimated
equations) and the generalized equation method of weighted
estimates (MI-GEE vs. WGEE)] for dealing with missing data in
unbalanced repeated measures designs. They conclude that MI-
GEE is the most robust for type I error rates with MAR and that
CPM-T and CPM-U control these properly, while WGEE tends
to inflate them. On the other hand, when missingness is NMAR,
all show high type I error rates. With regard to statistical power,
procedures based on covariance structures are clearly more
powerful than MI-GEE and WGEE.

In the context of hierarchical and multigroup models, Vallejo et
al. (2014) compared the effectiveness of AIC and BIC with other
selectors (AICc, BIC, CAIC and HQIC) manipulating the intraclass
correlation variables, number of groups, group size, parameter
value and slope intercept covariance. They conclude that none of
them functions correctly in all conditions or is consistently better
than the others. Likewise, they indicate that AIC or AICC are more
recommended when independent random effects are assumed,
whereas BIC and AIC are more consistent when they are assumed
dependent.

Next, in the context of the analysis of longitudinal data with
incomplete measures and arbitrary covariance structures, Vallejo
et al., (2018) report that with MAR, four repeated measures and
homogeneity of variances, the CPM-U method (mixed linear
model) controls type I error rates slightly better and exhibits
higher power levels than the Brown-Forsythe procedures based
on multiple imputations (MI-MBF), original data (OD-MBF)
and complete cases (CC-MBF). However, if the homogeneity of
variance is violated, MI-MBF better controls type I error rates
(more conservative with four and six measures and liberal with
eight) and shows similar power levels to the remaining procedures
(except with OD-MBF and homogeneous variances). A similar
pattern occurs with six and eight measures, although the control
of type I error rates and power tends to worsen under conditions
of heterogeneity.

Given the impact of the latter on different procedures, Vallejo
et al., (2019) propose the solution of estimating the sample size
necessary to reach power levels of 0.80 based on the ordinary least
squares method and the empirical method of REML in multilevel
designs for interaction effects with complete and incomplete data
vectors (with homogeneous and heterogeneous variances at levels
1 and 2), relative bias levels (theoretical and empirical) and a
MAR mechanism. The results show that if there is heterogeneity
of variances and incomplete data vectors, larger sample sizes are
required to reach the nominal power of 0.80, and to make more
accurate estimates and more realistic conclusions.

Regarding the adjustment of various covariance structures
using selection criteria under different conditions that can be
generalized to multivariate contexts (Ferndndez et al., 2010),
Livacic-Rojas et al., (2013) report that different studies show
that, under different analytical conditions, AIC better selects the
underlying structure of the data than BIC (48.13 versus 41.63%
on average). However, a comparison of the frequency of selection
of covariance structures (from 12 possible ones) and type I error
rates between AIC and the correctly identified model (CIM) in a
repeated measures design (p=3; q=4) with complete vectors, three
covariance structures (RC, ARH, UN), three group sizes (30, 45,
60) and the relationship between the covariance structure and the
group size (null, positive and negative) found that AIC selects the
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original covariance structure on 2% of occasions and that it does so
on 48% of occasions for the heterogeneous version with slightly
higher type I error rates.

Finally, associated with the previous study with similar
manipulated variables, normal and non-normal distributions,
complete vectors and truncated means, Livacic-Rojas et al., (2017)
compared the sensitivity of AIC, MCI and MBF (Modified Brown
Forsythe). They report that MBF functions better than AIC and
CIM (correctly identified model) when the groups are small (n =
30), the relationship between covariance matrices and sample size
is negative and there is a UN matrix for all types of effects.

Based on the background presented here, the objective of
this paper is to analyze the effectiveness of different information
criteria (AIC, AICc, BIC, CAIC and HQIC) to select the covariance
structure when there are missing data in three different scenarios.
It should be noted that with respect to previous studies, our study
incorporates three missingness mechanisms (MAR, MCAR and
NMAR), with a repeated measures design (p=2; q=5), different
sample sizes (50, 100 and 120), homogeneity and heterogeneity
of covariance matrices (1-3; 1-5) and their different types of
relationship.

Method

A partially repeated measures design with two groups (p=2)
and five measures (q=5) was used in a two-stage process. In the
first stage, the following variables were manipulated: a) the model
complexity; b) total sample size; ¢) equality, inequality and the
type of dispersion matrices; d) the non-response mechanism and
the type of missing data pattern. In the second stage, two more
variables were added: e) heterogeneous matching of covariance
matrices and sample size (null, positive and negative); f) non-
normal distribution of data.

Variables manipulated in the two studies
Study one:

(a) Complexity of the model used to generate the data:
a three-stage study was conducted. In the first stage,
discriminating between MCAR, MAR and MNAR non-
response patterns, the covariance structure was kept
constant and the mean structure was adjusted. In the
second stage, the mean structure was assumed known
and the covariance structure was adjusted. In the third
stage, both structures were adjusted at the same time. The
following regression model was used in each of the studies:

E(Y,.ik) =Bo + BTt + P Timey +B;Trt; x Time,, , where

Y represents the response given by the ith subject i = I,
.. n, of the j-th group on the k-th occasion k = 1, ..., 1,
Trt, denotes an indicator variable for the ith subject in the
J-th treatment group and  Time, the corresponding time
points. In addition, the adjustment of the mean structure
required the generation of the data from an additive model
(without Trtij - Time,, interaction) and a non-additive model
(with interaction). In both models, the magnitude of the
regression coefficients was selected, attempting to ensure
that the null hypotheses referring to fixed effects (complex
case) or to the fixed design effect (simple case) were

(b)

©

(d)

(e)

rejected in 80% of cases with a 95% confidence level. The
value of the parameters that satisfy the aforementioned
power was obtained using numerical techniques and the
PROC MIXED module of the SAS program.

Total sample size: For each ¢ value, three total sample sizes

n= Zf n; were considered (n =50, n = 100 and n=120) as

being representative of research in psychology or clinical
trials.

Pairing of covariance matrices and group size: When the
design is balanced, the relationship between the size of the
dispersion matrices and the group size is null. When the
design is unbalanced, the relationship can be positive or
negative. A positive relationship implies that the smallest
group is associated with the smallest dispersion matrix,
while a negative relationship implies that the smallest
group is associated with the largest dispersion matrix.

For the different-sized groups the configuration was: (a)
20-30, 30-20, 10-40, 40-10 (n = 50); (b) 40-60, 60-40, 20-
80, 80-20 (n = 100) and; (c) 50-70, 70-50, 30-90, 90-30 (n
=120).

Equality of dispersion matrices: The performance of the
selection criteria was evaluated with homogeneous and
heterogeneous covariance matrices available in SAS
and, in the first case, the elements of the two dispersion
matrices were equal to each other X2=2X . In accordance
with the work of Livacic-Rojas et al., (2013), the following
matrices were used: random coefficients (RC) for Scenario
1, and first order autoregressive heterogeneous (ARH),
Toeplitz (TOEP) and Unstructured (UN) for Scenarios 2
and 3.

Non-response mechanism and type of missing data
pattern:

1.MCAR with monotone missing data pattern: Two

situations were specified. In the first, the MCAR process
was denoted with a time-independent monotone missing
data pattern (MCAR/IMP); subject i was not observed
on either occasion k or the following occasions if U, <
. In the second, the MCAR process was denoted with a
time-dependent monotone missing data pattern (MCAR/
DMP); subject i was not observed on either occasion k
or the following occasions if U, <m,.

2. MAR with monotone missingness pattern: Two
situations were specified. In the first, MAR was denoted
with a monotone time-independent missingness pattern
(MAR/IMP), subject i was not observed on occasion
k or on the following occasions, if U, < @ (Yijk-l +9)
where U, is a uniformly distributed random variable.
In this case, 8 = ¢!'(x)2"%, where @’'(*) is the inverse
distribution or quantile function of the loss ratio . In
other words, RW =0— Riju =0, Vu > t. In the second,
MAR was denoted with a time-dependent monotone
missingness pattern (MAR/DMP), subject i was not
observed on occasion ¢ or on the following occasions, if
U, < o(Yijk + ).

3. MNAR with monotone missing data pattern: Two
situations were specified. In the first, MNAR was
denoted with a monotone time-independent missingness
pattern (MNAR/IMP); subject i was not observed on
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occasion k or on subsequent occasions if Uy, < oY,
+ 0). In the second, MNAR was denoted with a time-
dependent monotone missingness pattern (MNAR/
DMP); subject i was not observed on occasion k or on
subsequent occasions if U, <Y, + ).

(f) Form of the distribution of the measurement variable:
Although the MML is based on compliance with the
normality assumption, when working with real data it is
common for the indices of asymmetry (y,) and kurtosis
(v, ,to deviate from zero (Micceri, 1989), which may
lead to an incorrect interpretation of the results. In this
case, the population distributions was the multivariate
normal distribution (y, & vy, = 0). The following
procedures were used in generating the data:

Normal case: In each treatment group, continuous longitudinal
data were generated using the method of Ripley (1987). This
procedure was performed in two steps:

1. Generation of z, pseudo-random observation vectors with
E(Z,-,-) =0 and Cov(zij)z from a normal distribution, where I
is the identity matrix. These vectors were obtained by means
of the RANNOR function in SAS.

2. Creation of complete data sets Vi multiplying the vector
z; by the Cholesky decomposition L,, that is y; = /)’]. + Lz,
where y, is a vector of length ¢ for (i jk)-th subject, B, is a
vector of dimension p containing the fixed effects of the
population and L, is a lower triangular matrix of dimension
t satisfying z,=LL1, I=1,.60r12.

Study 2:

Equally, in addition to the variables a, b, ¢, d and e from study
one, the following variables were manipulated:

(f) Inequality of dispersion matrices: The elements of one of
the matrices were three and five times greater than those of
the other 3, = 53 with the same conditions and matrices
as indicated in point d.

(g) Form of the distribution of the measurement variable: In
this case, the population distributions was a moderately
skewed distribution with parameters equivalent to
nonnormal distributions (y1 =4; y2 =42), Laplace (y1 =2;
v¥2 = 6), log normal (yl =1.7501897; y2 = 5.8984457)
and exponential (Y1 =6.1848771; y2 = 110.93639). In this
analytical context, the non-normal distribution with (y1 =4;
v2 =42) has been used to assess the impact that moderate
bias and peak indexes would have on the performance of
the five information criteria.

The following procedures were used in generating the data:

Non-normal case: Non-normal multivariate data were generated
using the power method developed by Fleishman (1978) and
extended to multivariate situations by Vale and Maurelli (1983).
This procedure involved the following steps:

1. Calculating a weight vector w = [a b ¢ d]’ with the desired

indices of asymmetry and kurtosis for each distribution,
using the Fleishman power method.
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2. Calculating an appropriate intermediate correlation matrix,
R, solving for all possible pairs of repeated measures with
the following third order polynomial equation: R . =
Pypdb? + 6bd + 9d&°) + p?,  2¢* + p°,  6d4°, where p,, .
is the correlation coefficient between two standard normal
variables and X, = (a + bZ + ¢Z +dZ’ ) and X,.= (a + bZ,,
+cZ?, + dZ’ ) are the two correlated non-normal variables.

3. Factoring the intermediate correlation matrix R, to generate
a vector of multivariate random normal variables with the
prescribed p,, . , that is, x, = Mz, where x, denotes the
vector of variables transformed with E(xlj) =0 and Cov(x,.j)
= R, and M, is the lower triangular matrix obtained by
Cholesky decomposition, with the property R, = MM ,.

4. Transforming the variables generated in the previous step
so that they take the desired distribution form, as well as the
desired fixed effects and variances, that is, V= BJ. + DI(X'U.W),
where D, is a diagonal matrix containing the standard
deviations of the covariance matrix ¥, and X‘ij_ =1 kxi]le.]x3lj].
In the line of studies about non normal distributions, the
reader can also consult Blanca et al., (2013) and Bono et al.,
(2017; 2020).

Finally, the information criteria used are described in the works
of Livacic-Rojas et. al., (2013; 2017) and Vallejo et al., (2014).

Results

In study 1, the results of Table 1 (normal distribution with
homogenous relationship between the size of the group and 1-1
variances) in scenario 1 (RC matrix) show high power levels
(80% or higher, Aberson, 2019) for the five information criteria
in all the analyzed conditions. However, in scenario 2 under ARH
matrix, higher power is observed for HQICR, BICR and CAICR
criteria (60% of the analyzed conditions) for all the missing data
mechanisms. In turn, under TOEP matrix, the AIC and AICCR
criteria are efficient in 35% of the analyzed conditions, whereas
under UN matrix these work well in 15% of the occasions for the
Complete Cases and MCAR missingness mechanisms. In scenario
3, under ARH matrix, power is high in 60% of the conditions
analyzed for HQICR, BICR and CAICR criteria with all the
missingness mechanisms. In turn, under TOEP and UN, power
levels are high in 55% and 35% of the conditions with AIC and
AICCR criteria in all mechanisms.

In turn, Table 2 (normal distribution, with group heterogeneous
relationships and 1-3; 1-5 variances) shows values similar to
the table above, whereas power is slightly higher when the
heterogenous relationship is 1-5. In scenario 2, all the criteria show
high power in ARH matrix in 93% of the conditions analyzed with
all the mechanisms. In turn, under TOEP matrix, AIC and AICCR
criteria work well in 23% of the conditions analyzed with Complete
Cases, MAR and MCAR mechanisms and the two heterogeneous
relationships. On the other hand, in scenario 3, under ARH,
the HQICR, BICR and CAICR criteria are efficient with all the
missingness mechanisms in 50% of the conditions and the two
heterogeneous relationships. However, in TOEP and UN matrices,
the AIC and AICCR criteria work better, with all the missingness
mechanisms and the two heterogeneous relationships in 20% and
38% of the conditions, respectively.

On the other hand, in study 2, when the distribution is non-
normal (y=4; y,=42 and, with heterogeneous relationships
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between groups and 1-3; 1-5 variance), Table 3 shows high power
only in scenario 1 (RC matrix) in 98% of the analyzed conditions
(under RC matrix) and associated to all the information criteria,
missingness mechanisms and heterogeneous relationships. In
scenario 2, criteria are inefficient in 100% of reported conditions.
Finally, in scenario 3, under the UN matrix, the AIC and AICCR
criteria are efficient in 20% of the occasions with Complete,
MCAR, NMAR criteria and 1-5 heterogenous relationship.

In turn, table 4 (Laplace distribution), shows in scenario 1 (RC
matrix) high power in 97.5% of the conditions for all the information
criteria, missingness mechanisms and heterogeneous relationships.
In scenario 2, criteria are inefficient in 100% of the reported
conditions. In turn, in scenario 3, under ARH matrix, power is
high in 2.5% of the conditions with CAICR criterion, the MCAR
mechanism and 1-5 heterogeneous relationship. Subsequently,
under UN matrix, power is high in 27.5% of the conditions with
AIC and AICCR criteria, the Complete Cases mechanisms, MCAR,
NMAR and the two heterogeneous relationships.

In turn, table 5 (normal Log distribution), in scenario 1 (RC
matrix), the criteria are efficient in 100% of reported conditions.
In scenario 2, under ARH matrix, power is high in 30% of the
conditions analyzed with HQICR, BICR and CAICR criteria,
all the missingness mechanisms and the two heterogeneous
relationships. Under TOEP, power is high only in 2.5% of the
conditions with AIC criterion, the Complete Cases mechanism
and 1-5 heterogeneous relationship. In scenario 3, associated to

ARH, power is high only in 2.5% of the conditions with HQICR,
BICR, CAICR criteria, all the Complete Cases missingness
mechanisms and the two heterogeneous relationships. For the UN
matrix, power is high in 30% of the conditions with AIC, AICCR
criteria, all Complete Cases missingness mechanisms and the two
heterogeneous relationships.

Finally, Table 6 (Exponential distribution) shows high power in
scenario 1 (RC matrix) in all conditions analyzed for all criteria,
mechanisms and the two heterogeneous relationships. In scenario
2, the criteria are inefficient in 100% of reported conditions. In
scenario 3, power is high in 17.5% of conditions analyzed under
UN matrix with AIC and AICC criteria, Complete Cases, MCAR
and the two heterogenous relationships.

Discussion

In the present study the sensitivity levels of five information
criteria have been analyzed to select covariance structures when there
are different missingness mechanisms in three different scenarios.

In study 1, scenario 1 (maintaining constant matrix and mean
adjustment) the five information criteria work well to discriminate
the covariance structure for missing data with the different
mechanisms. In scenarios 2 (constant mean and matrix adjustment)
and 3 (constant mean and matrix),a similar situation is observed, but
with higher efficiency under ARH matrix. Subsequently, when the
relationships between groups and variances are heterogeneous, in

Table 1
Average statistical power levels for samples of 50, 100 and 120 cases in three different scenarios with normal distribution (y,=0; v, =0) and relationship of groups with
homogeneity of variance (1-1)

S1 S2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
C AIC 1-1 95.1 71.5 80.7 89.8 76.5 89.8 90.3
AICCR 1-1 951 759 84.1 87.3 788 90.7 87.7
HQICR 1-1 94.5 95.8 81.2 652 95.7 82.7 65.3
BICR 1-1 9.5 98.6 80.4 44.6 99.0 80.7 447
CAICR 1-1 93.5 98.8 68.2 25.6 99.7 71.6 257
MAR AIC 1-1 954 69.1 76.7 794 76.0 82.8 804
AICCR 1-1 954 732 784 75.5 785 83.1 76.7
HQICR 1-1 953 91.2 76.5 56.2 92.7 719 57.3
BICR 1-1 954 98.5 572 21.1 98.8 56.1 218
CAICR 1-1 94.7 994 419 8.34 99.5 409 9.19
MCAR AIC 1-1 953 69.2 80.1 82.0 76.1 85.5 85.5
AICCR 1-1 953 73.1 82.1 78.9 785 86.1 82.1
HQICR 1-1 95.2 91.7 83.0 63.3 92.8 83.8 65.7
BICR 1-1 94.7 98.8 64.9 31.8 98.9 654 30.8
CAICR 1-1 93.6 99.1 53.6 178 99.3 535 18.7
NMAR AIC 1-1 95.6 68.5 76.8 79.5 76.1 83.7 80.8
AICCR 1-1 95.6 72.1 785 76.8 782 83.8 718
HQICR 1-1 95.5 91.6 714 57.0 929 8.8 56.1
BICR 1-1 9438 98.5 55.5 214 98.7 58.7 21.6
CAICR 1-1 93.8 99.5 415 8.83 99.6 448 8.93

Legend: mechanism (M); complete case (C); missing at random (MAR); missing completely at random (MCAR); not missing at random (NMAR); IC (information criterion); AIC (Akaike
information criterion); AICCR (Akaike information criterion, corrected robust); BICR (Bayesian information criterion, robust); HQICR (Hannan-Quinn information criterion, robust); CAICR
(consistent Akaike information criterion, robust); HBGM (homogeneous relation between group matrices 1-1); Scenario 1 (S1); Scenario 2 (S2); Scenario 3 (S3); random coefficients (RC);
autoregressive heterogeneity (ARH); Toepliz (TOEP); unstructured (UN); y = Skewness; y, =Kurtosis
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Table 2
Average statistical power levels for samples of 50, 100 and 120 with normal distribution (y,=0; v, =0) and relationship groups-heterogeneity of variance (1-3; 1-5)

s1 s2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
A 13 9.1 842 88.7 750 642 81.8 90.8
1-5 858 84.2 89.6 76.6 533 838 88.4
i 842 634 67.1 838 88.4

AICCR 13 90.1 87.8
1-5 858 879 86.2 66.7 56.0 758 88.4
i 75 356 86.2 88.6 716
C HQICR 13 90.0 95.4

1-5 855 97.2 74.1 386 785 84.7 793
BICR 13 893 929 392 285 96.8 783 487
15 853 99.6 397 385 93.6 77.1 50.9
13 882 86.3 176 021 99.0 67.3 30.1
CAICR 1-5 834 99.2 19.3 034 973 66.7 337
AlC 13 91.1 85.6 88.8 675 614 793 89.1
1-5 845 84.6 87.0 652 46.8 65.6 90.3
13 91.1 88.8 86.1 56.3 633 8L.1 87.0
AICCR 15 84.5 88.4 84.4 524 489 68.5 88.5
1-3 91.1 98.6 56.5 182 857 82.9 662
MAR HQICR 1-5 84.4 98.8 525 188 763 778 711
BICR 13 91.1 99.2 630 034 97.9 617 30.3
1-5 843 100 8.10 035 94.1 58.0 363
13 91.1 96.8 090 0.00 99.0 413 135
CAICR 1-5 84.1 100 1.80 0.00 973 395 19.1
AlC 13 9.0 79.6 798 687 638 774 86.9
1-5 86.0 822 816 704 522 69.2 88.2
1-3 88.9 82.6 747 556 66.5 79.1 838
AICCR 1-5 86.0 87.1 765 579 555 715 857
13 8.8 887 5738 250 85.5 80.5 68.8
MCAR HQICR 15 858 96.4 595 28.1 774 769 714
BICR 13 88.1 96.4 368 169 92.1 83.6 50.9
1-5 85.1 98.6 189 159 93.1 632 400
13 87.1 757 4.19 005 98.9 50.7 19.0
CAICR 1-5 842 973 485 0.08 97.1 502 28
AlC 13 88.1 80.3 757 62.6 632 746 82.6
15 859 814 770 640 50.7 65.1 84.5
1-3 88.0 848 707 492 66.4 759 789
AICCR 15 86.0 85.8 716 50.9 540 672 81.3
13 $8.0 923 487 187 855 754 60.9
NMAR HQICR 15 857 96.1 511 210 76.6 716 64.7
BICR 13 873 86.8 9.68 047 96.7 553 265
-5 849 98.4 108 101 924 550 3.1
13 86.3 774 1.85 0.00 98.7 404 124
CAICR 1-5 837 97.1 240 0.08 96.8 404 167

Legend: mechanism (M); IC (information criterion); HBGM (heterogeneous relation between group matrices 1-3; 1-5); complete case (C); missing at random (MAR); missing completely at
random (MCAR); not missing at random (NMAR); AIC (Akaike information criterion); AICCR (Akaike information criterion, corrected robust); BICR (Bayesian information criterion, robust);
HQICR (Hannan-Quinn information criterion, robust); CAICR (corrected Akaike information criterion, robust); Scenario 1 (S1); Scenario 2 (S2); Scenario 3 (S3); random coefficients (RC);
autoregressive heterogeneity (ARH); Toepliz (TOEP); unstructured (UN); y = Skewness; y, =Kurtosis

scenario 2, AIC shows slightly higher power than the other criteria, it is important for researchers to take these results with caution
whereas in scenario 3 these are observed in association with HQICR, because heterogeneous variances impact negatively, increasing the
BICR and CAICR, and all the missingness mechanisms. These error, which affects parameter estimation (Raghunathan, 2016).
results coincide with those of Vallejo et., (2011a; 2014; 2019) and Moreover, the results of Scenario 1 are unrealistic in psychology
Livacic-Rojas et al., (2013; 2017). Notwithstanding the foregoing, research that uses repeated measures designs in applied settings.
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Table 3
Average statistical power levels for samples of 50, 100 and 120 with non-normal (y,=4; y, =42) and relationship groups-heterogeneity of variance (1-3; 1-5)
S1 S2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
AIC 1-3 97.0 19.8 5738 749 178 29.2 86.9
1-5 86.9 158 59.8 71.6 14.7 240 88.5
1-3 97.0 233 55.7 64.4 192 30.5 833
AICCR 1-5 86.8 189 58.5 68.5 16.0 26.1 86.1
1-3 96.7 374 492 41.6 323 429 71.6
¢ HQICR 1-5 86.7 349 53.6 46.3 278 39.1 748
BICR 1-3 96.2 552 29.8 12.7 46.9 52.6 51.1
1-5 853 61.0 30.1 115 458 48.6 48.6
1-3 94.1 62.6 12.5 235 60.0 478 313
CAICR 1-5 839 714 162 4.15 550 46.9 349
AIC 1-3 86.4 22.6 48.8 66.3 220 300 781
1-5 86.8 240 50.2 68.7 192 26.0 79.1
1-3 86.9 26.5 46.1 540 23.8 314 754
AICCR 1-5 86.7 284 474 572 20.8 279 76.6
1-3 86.0 420 34.1 29.9 38.8 416 580
MAR HQICR 1-5 86.5 46.8 350 310 353 373 60.5
BICR 1-3 84.9 56.0 8.63 533 583 41.1 312
1-5 854 69.0 8.56 4.80 541 36.9 324
1-3 83.7 56.7 1.99 207 67.1 340 16.4
CAICR 1-5 84.0 740 2.18 0.85 64.8 294 193
AIC 1-3 84.3 16.8 483 70.7 18.4 284 833
1-5 86.1 18.0 513 717 155 237 838
1-3 79.7 19.3 425 554 18.8 28.8 753
AICCR 1-5 86.0 21.5 49.1 60.6 16.8 25.5 80.8
1-3 84.1 353 36.1 3738 339 415 65.6
MCAR HQICR 1-5 85.7 380 40.0 36.5 293 36.0 64.9
BICR 1-3 832 548 118 10.8 527 435 375
1-5 84.6 622 143 707 415 394 375
1-3 81.2 59.6 358 531 62.5 372 23.6
CAICR 1-5 83.3 719 474 1.82 574 345 237
AIC 1-3 84.2 210 46.5 654 21.8 310 79.9
1-5 86.8 234 50.0 68.3 18.6 258 81.1
1-3 84.1 249 44.6 542 234 327 76.5
AICCR 1-5 86.8 27.1 47.6 57.1 20.0 27.6 78.1
1-3 83.8 399 325 28.1 38.1 425 59.7
NMAR HQICR 1-5 86.6 434 355 32.1 338 375 61.9
BICR 1-3 82.8 56.6 7.56 3.68 57.1 40.5 30.5
1-5 85.6 632 9.05 492 52.5 37.6 344
1-3 81.6 58.6 1.79 0.59 66.7 323 17.6
CAICR 1-5 84.2 70.7 220 091 61.6 303 20.6
Legend: Same as Table 2

On the other hand, there are two different analytical contexts
in study 2. On one hand, with (non-normal with y=4; y,=42,
Lapalce and Exponential) distributions, power is high in scenario
1 for most information criteria, missingness mechanisms and two
heterogenous relationships. In turn, in scenario 3 under the UN
matrix, the AIC and AICCR criteria are efficient with Complete
Cases, MAR, MCAR and NMAR mechanisms. On the other hand,
with Log normal distribution, in scenario 1 the situation is similar

to previous distributions. In scenario 2, under ARH matrix, power
is high with BICR and CAICR criteria, all missingness criteria and
heterogenous relationships. In scenario 3, associated to UN, there
is high power with AIC and AICCR, all missingness mechanisms
and heterogeneous relationships. These results coincide in part with
those of Vallejo et. al., (2014; 2018; 2019); Livacic Rojas et. al.,
(2013; 2017), but are in the opposite direction to the indications of
Vallejo et. al., (2011a; 2011b) since the greater the heterogeneity,
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Table 4
Average statistical power levels for samples of 50, 100 and 120 with Laplace (y, =2; v, = 6) and relationship groups-heterogeneity of variance (1-3; 1-5)
S1 S2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
AIC 1-3 86.0 19.3 544 721 170 9.92 86.6
1-5 88.2 14.8 584 69.4 14.1 223 879
1-3 81.3 204 49.6 60.5 16.6 9.86 80.0
AICCR 1-5 88.2 179 55.5 613 155 244 858
1-3 85.7 339 46.5 424 29.9 12.6 732
¢ HQICR 1-5 87.9 320 49.5 43.8 26.0 36.5 728
BICR 1-3 84.8 53.0 253 9.71 415 13.7 474
1-5 86.8 56.1 272 172 41.1 46.3 46.8
1-3 83.3 59.0 120 278 57.6 124 327
CAICR 1-5 852 67.1 13.1 11.6 492 44.7 324
AIC 1-3 85.5 189 480 67.5 20.7 254 80.2
1-5 87.7 212 483 68.1 171 245 80.8
1-3 854 224 455 55.3 223 274 770
AICCR 1-5 88.6 259 46.1 573 18.8 264 78.1
1-3 85.1 359 353 29.9 36.9 370 60.4
MAR HQICR 1-5 88.3 43.6 356 3238 325 364 61.7
BICR 1-3 839 52.1 118 4.13 559 379 319
1-5 87.0 65.3 10.1 5.15 514 37.1 342
1-3 822 54.6 392 0.72 65.2 31.1 182
CAICR 1-5 854 72.3 2.88 1.19 61.0 311 20.6
AIC 1-3 85.7 150 458 69.8 16.7 258 827
1-5 88.8 15.5 48.1 729 387 21.8 843
1-3 85.7 182 437 58.1 18.1 28.1 79.6
AICCR 1-5 88.7 19.2 46.0 6338 415 23.6 81.6
1-3 85.5 318 344 332 300 392 65.0
MCAR HQICR 1-5 88.4 344 371 39.5 60.7 336 68.1
BICR 1-3 84.4 51.0 114 559 490 41.1 371
1-5 87.3 58.9 139 8.66 71.8 37.8 40.8
1-3 83.0 56.7 341 122 58.5 353 23.1
CAICR 1-5 85.7 69.5 442 278 83.2 334 269
AIC 1-3 86.3 18.3 46.6 68.4 19.9 282 80.5
1-5 86.2 209 47.8 69.0 17.5 258 81.6
1-3 86.2 222 43.6 57.0 21.6 30.1 77.1
AICCR 1-5 85.7 227 46.2 574 188 26.5 788
1-3 85.0 36.9 312 322 356 399 60.9
NMAR HQICR 1-5 85.5 37.6 35.6 322 31.8 355 63.8
BICR 1-3 82.0 54.1 725 6.64 540 40.2 323
1-5 844 58.7 9.59 5.53 50.0 373 35.6
1-3 79.5 58.2 1.65 249 63.5 328 18.9
CAICR 1-5 832 66.8 258 1.20 60.1 30.7 218
Legend: Same as Table 2

the lower the power levels expected. They should also be taken with
caution because the missingness pattern considered is monotone,
which might not be the case if this situation were to change.

For applied studies, researchers are advised that if they detect
missing data, they should use the information criteria to detect the
covariance structure that underlies the data in order to apply more
appropriate methods for parameter estimation. Regarding this
point, Leke et al., (2019) note that imputation methods (individual
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or multiple) are very viable in the social sciences. However, it is
important to consider that multivariate methods tend to assume
that the missingness mechanisms are MCAR or MAR with
monotone patterns (Little & Rubin, 2020) and that it is uncommon
for the missingness mechanism to be estimated with some degree
of confidence (Funatogawa et al., 2019). If the mechanism were
NMAR, biased results and wrong predictions would be expected
to be produced (Liu, 2016). On a similar note, since the structure of
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Table 5
Average statistical power levels for samples of 50, 100 and 120 with log normal distribution (y, =1.7501897; y, = 5.8984457) and relationship groups-heterogeneity of
variance (1-3; 1-5)

S1 S2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
AIC 1-3 84.7 475 712 754 35.1 519 89.6
1-5 85.6 438 819 76.5 283 438 89.8
1-3 84.7 50.8 742 64.8 374 552 87.2
AICCR 1-5 85.6 50.0 8.7 65.6 30.9 46.9 874
1-3 84.6 71.3 65.9 409 572 70.1 75.5
¢ HQICR 1-5 85.3 727 69.1 410 495 64.3 753
BICR 1-3 839 829 383 112 73.1 67.5 479
1-5 845 91.6 38.1 6.64 722 70.3 478
1-3 83.0 82.5 19.5 297 86.0 63.7 304
CAICR 1-5 834 953 199 1.12 814 64.3 31.1
AIC 1-3 86.0 50.6 69.3 63.8 40.7 532 80.2
1-5 84.5 53.0 69.6 67.5 337 44.7 81.5
1-3 86.0 55.8 65.0 50.7 432 55.7 76.5
AICCR 1-5 844 59.4 65.5 55.7 36.0 473 71.7
1-3 85.8 73.6 470 220 64.5 64.2 58.1
MAR HQICR 1-5 842 80.0 417 30.8 56.9 57.1 59.5
BICR 1-3 85.2 713 11.0 1.08 83.5 539 26.9
1-5 834 919 1.1 6.86 783 498 279
1-3 84.1 70.0 246 0.08 90.1 41.6 13.6
CAICR 1-5 82.2 91.5 2.60 3.16 86.3 384 14.7
AIC 1-3 853 44.1 70.5 69.1 353 495 85.0
1-5 84.3 44.6 724 70.6 30.5 427 86.4
1-3 85.3 499 66.5 56.8 379 50.6 81.8
AICCR 1-5 843 51.0 68.6 58.2 33.0 44.6 83.7
1-3 85.1 70.4 514 28.5 58.6 62.0 67.1
MCAR HQICR 1-5 84.0 73.6 53.5 312 534 56.5 69.1
BICR 1-3 84.3 80.6 152 230 79.3 56.5 36.2
1-5 83.2 91.5 172 3.12 74.9 535 39.8
1-3 83.0 76.8 4.14 0.15 87.2 46.1 209
CAICR 1-5 82.0 93.5 4.66 0.38 83.2 44.1 239
AIC 1-3 853 48.7 644 64.5 39.6 520 81.6
1-5 849 522 694 67.1 332 433 82.8
1-3 85.3 544 60.4 52.1 423 54.4 78.1
AICCR 1-5 849 58.9 652 54.5 36.0 45.1 79.7
1-3 85.1 73.1 452 228 63.1 63.1 60.4
NMAR HQICR 1-5 84.8 79.1 47.1 26.6 56.6 55.6 63.6
BICR 1-3 844 79.9 142 1.39 82.3 522 289
1-5 84.0 92.5 11.0 2.17 718 48.6 333
1-3 833 742 7.88 0.08 89.3 39.0 14.8
CAICR 1-5 82.9 93.6 278 0.25 853 37.8 18.3

Legend: Same as Table 2

single-level data hinders appropriate analysis with missing values
(Heck & Thomas, 2020), it is recommended to use multilevel
models with larger sample sizes in order to have more efficient
estimators (Vallejo et al., 2019).

Finally, it would be appropriate for future studies to analyze the
behavior of different information criteria in selecting covariance
structures, considering the percentage of missing data, the effect
size, larger samples, the relationship between the matrices and the

more heterogeneous groups (Grissom et al., 2012), and other non-
normal distributions.
Acknowledgements

The authors would like express acknowledge the suggestions
of revisors to improve this work has been funded by the Chilean
National Fund for Scientific and Technological Development
(FONDECYT.Ref.: 1170642) and the Spanish Ministry of Science,
Innovation and Universities (Ref: PGC2018-101574-B-100).

407



Pablo Livacic-Rojas, Paula Fernandez, Guillermo Vallejo, Ellian Tuero-Herrero, and Feliciano Ordofiez

Table 6
Average statistical power levels for samples of 50, 100 and 120 with exponential (y, =6.1848771; y, = 110.93639) and relationship groups-heterogeneity of variance (1-3;
1-5)
S1 S2 S3
M IC HBGM RC ARH TOEP UN ARH TOEP UN
AIC 1-3 884 5.36 317 76.1 8.33 143 855
1-5 922 507 342 76.5 7.13 12.8 83.1
1-3 884 6.65 30.5 67.6 9.21 159 83.1
AICCR 1-5 92.1 6.52 33.1 684 7.86 138 81.8
1-3 874 13.1 264 49.1 16.1 243 70.8
¢ HQICR 1-5 918 133 30.1 509 143 213 70.7
BICR 1-3 87.0 253 153 17.3 278 33.1 48.1
1-5 90.6 276 18.8 204 250 280 484
1-3 855 32.8 7.65 7.90 352 33.1 350
CAICR 1-5 89.1 380 9.94 10.0 321 295 358
AIC 1-3 85.7 927 300 693 11.6 15.6 780
1-5 93.7 10.5 303 70.1 10.6 137 78.6
1-3 85.6 112 28.6 590 12.7 16.7 750
AICCR 1-5 93.6 127 279 60.5 114 15.1 759
1-3 853 194 214 36.1 221 237 590
MAR HQICR 1-5 93.3 225 20.1 380 203 214 60.1
BICR 1-3 842 312 641 9.68 359 264 353
1-5 92.1 396 5.33 991 34.1 227 357
1-3 825 364 1.70 2.59 453 222 218
CAICR 1-5 904 48.1 192 346 430 18.7 239
AIC 1-3 89.9 537 26.5 72.6 9.12 143 829
1-5 94.1 5.90 30.8 7.7 7.74 12.0 81.8
1-3 899 6.94 256 634 9.95 155 80.6
AICCR 1-5 94.0 7.65 290 624 8.64 132 79.2
1-3 895 142 20.6 40.9 17.6 226 66.3
MCAR HQICR 1-5 93.5 154 232 424 152 200 66.2
BICR 1-3 88.3 21.7 7.89 10.9 30.1 270 414
1-5 923 310 943 12.7 270 248 427
1-3 87.1 356 2.96 4.06 379 238 28.8
CAICR 1-5 904 414 3.62 499 353 227 30.1
AIC 1-3 89.6 775 245 69.6 114 16.3 780
1-5 938 8.09 282 69.3 9.87 192 740
1-3 89.6 9.58 233 58.7 12.3 17.7 75.1
AICCR 1-5 93.8 9.99 270 610 10.6 202 718
1-3 893 17.6 18.1 373 20.5 24.7 59.2
NMAR HQICR 1-5 934 19.0 20.7 380 184 25.1 57.8
BICR 1-3 88.2 319 6.57 10.6 339 264 338
1-5 92.1 36.6 5.86 9.99 312 252 36.2
1-3 86.3 372 3.62 458 42.6 220 219
CAICR 1-5 895 37.8 752 153 340 19.7 353
Legend: Same as Table 2
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