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Missing data affect data quality, analysis and subsequent 
decision making (Leke & Marwala, 2019). According to Dong 
and Peng (2013), missingness ranges in psychology and education 
studies fl uctuate between 16% and 48% (Enders, 2003; Peng et al., 
2006 in Dong & Peng, 2013) and, in repeated measures designs, 
Liu (2016) indicates that they occur in 96% of cases and are a 
major problem (Sullivan et al., 2017). 

The inadequate treatment of missing data produces bias in 
the results (Liu, 2016) because there are smaller samples, more 

heterogeneous variances and unbalanced designs (Vallejo et al., 
2019). This also affects the effect size, statistical power (Vallejo 
et al., 2019; Vallejo et al.,  2018; Fernández et al.,  2018; Zhang 
& Yuang, 2018), the predictive capacity of the model (Garson, 
2020), the behavior of the information criteria (Vallejo et al., 2014; 
Livacic-Rojas et al., 2013; Livacic-Rojas et al., 2017) and the 
estimation of the parameters.

Focusing on the missingness process, Funatogawa and 
Funatogawa (2019) note that the mechanisms can be classifi ed 
hierarchically on three levels: MCAR (the missingness mechanism 
is not dependent on the process), MAR (the missingness mechanism 
is dependent on observed responses and not on responses not 
observed) and NMAR (the missingness mechanism is dependent 
on responses not observed). Under MCAR, standard procedures 
provide consistent estimators and, when the mechanism is MAR, 
the missingness process does not need to be simultaneously 
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Abstract Resumen

Backgrounds: This study analyzes the effectiveness of different 
information criteria for the selection of covariance structures, extending 
it to different missing data mechanisms, the maintenance and adjustment 
of the mean structures, and matrices. Method: The Monte Carlo method 
was used with 1,000 simulations, SAS 9.4 statistical software and a  
partially repeated measures design (p=2; q=5). The following variables 
were manipulated: a) the complexity of the model; b) sample size; c) 
matching of covariance matrices and sample size; d) dispersion matrices; 
e) the type of distribution of the variable; f) the non-response mechanism. 
Results: The results show that all information criteria worked well in 
Scenario 1 for normal and non-normal distributions with heterogeneity 
of variance. However, in Scenarios 2 and 3, all were accurate with the 
ARH matrix, whereas AIC, AICCR and HQICR worked better with 
TOEP and UN. When the distribution was not normal, AIC and AICCR 
were only accurate in Scenario 3, more heterogeneous and unstructured 
matrices, with complete cases, MAR and MCAR. Conclusions: In order 
to correctly select the matrix it is advisible to analyze the heterogeneity, 
sample size and distribution of the data.

Keywords: Information criteria, covariance structures, missing data, 
sensitivity, repeated measures designs.

Sensibilidad de cinco criterios de información para discriminar 
estructuras de covarianza bajo pérdida de datos en diseños de medidas 
repetidas. Antecedentes: el presente trabajo analiza la efectividad 
de distintos criterios de información para seleccionar estructuras de 
covarianza extendiéndolo a diferentes mecanismos  de pérdida de datos, la 
mantención y ajustes  de las estructuras de medias y las matrices. Método: 
se utilizó el método Monte Carlo con 1.000 simulaciones, el software 
estadístico SAS 9.4 y un diseño de medidas parcialmente repetidas (p=2; 
q=5). Las variables manipuladas fueron: a) complejidad del modelo;  b)  
tamaño muestral; c) emparejamiento de las matrices de covarianza y 
tamaño muestral; d) matrices de dispersión; e) forma de distribución de 
la variable; y f) mecanismo de no respuesta. Resultados: los resultados 
muestran que todos los criterios de información funcionan bien en el 
escenario 1 para distribuciones normales y no normales con homogeneidad 
y heterogeneidad de varianzas. Sin embargo, en los escenarios 2 y 3, todos 
son precisos con la matriz ARH, aunque, AIC, AICCR y HQICR lo hacen 
para TOEP y UN. Por otro lado, cuando la distribución no es normal, 
solo en el escenario 3 funcionan bien AIC y AICCR, matrices más 
heterogéneas y No Estructurada, con Casos Completo MAR y MCAR. 
Conclusiones: en consecuencia, para seleccionar la matriz correctamente 
se recomienda analizar la heterogeneidad, tamaño muestral y distribución 
de los datos.

Palabras clave: criterios de información, estructuras de covarianza, pérdida 
datos, sensibilidad, diseños medidas repetidas.
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modeled by probability methods because it can be factored in two 
parts (measurement and missingness processes). In this context, the 
maximum likelihood estimators (MLE) are consistent if the joint 
distribution of the response vector is correctly specifi ed. In this 
regard, Little and Rubin (2020) point out that MLE are fl exible, 
they avoid the use of ad hoc methods and they allow the estimation 
of variance even with missing data (see also in Molenberghs  et al., 
2015; Yoo, 2013). In the opposite scenario, generalized equation 
estimation (GEE) methods deliver biased estimators. Finally, 
under NMAR, MLEs provide biased estimators as they are the 
most complex mechanism, also affecting the prediction of patterns 
of change in study variables over time (Liu, 2016). In turn, under 
NMAR, the same author also notes that in longitudinal studies 
ignoring the missing data generates biased results, erroneous 
predictions and less mature statistical models than methods under 
MAR. 

In an attempt to resolve the above, Funatogawa et al., (2019) 
indicate that in longitudinal designs procedures have been 
developed to analyze responses over time, the types of effect or 
covariates and their relationship. They also note that mutually 
dependent responses require methods that consider the structural 
confi guration of the design based on correlations, the relationships 
between variances and covariances, the sample size, the number 
of measures and the relationship between them, because they 
infl uence the structures of means, variances, covariances, the 
(mixed or marginal) effects model and the method used for data 
analysis (maximum likelihood or other).

Vallejo et al., (2010) compared the effi cacy of several 
information criteria to select nested covariance structures with 
the likelihood ratio test (LRT) under three different scenarios 
(maintaining constant matrix and mean adjustment; constant mean 
and matrix adjustment; mean and matrix adjustment), in repeated 
measures designs (q=6), with three covariance matrices [random 
coeffi cients (RC), fi rst order auto-regressive heterogeneous 
(ARH1), unstructured (UN)], complete data, two groups  (p=2; 
n

1
=30; n

2
=60), with positive and negative relationship between 

the matrices and group sizes, normal (γ
1
= 0; γ

2
=0) and non-normal 

distributions [Laplace (γ
1
= 0; γ

2
=3); exponential (γ

1
= 2; γ

2
=6) and 

lognormal (γ
1
= 6.18; γ

2
=110.94)] and assuming the data generating 

process to be true. They found that the selection criteria work better 
when the matrices are more complex, while LRT (based on full 
maximum likelihood, FML) works better than the rest, although it 
is less effi cient when based on the restricted maximum likelihood 
method (REML).

In turn, Vallejo  et al.,  (2011a) analyzed the effectiveness of 
several information criteria (AIC, AICc, BIC, CAIC, HQIC) in 
repeated measures designs (additive and non-additive models of 
four and eight measures), under three scenarios with mean models 
and covariance structures, (identical to the previous study), 
data with normal and non-normal distribution (exponential), 
four autoregressive covariance matrices [autoregressive (AR), 
ARH1, Toeplitz (TOEP) and UN], complete data and monotone 
missingness (MAR). Regardless of the estimation method used, 
the criteria work best when the group size and repeated measures 
increase. However, with missing data and lack of normality, their 
effi ciency decreases, although it improves as the sample size 
increases.

With a slightly different scope to the two previous studies, 
Vallejo et al., (2011b) analyzed the error rates of type I and power 
by four methods [based on comparing the unstructured covariance 

structure, the true covariance structure (CPM-U vs. CPM-T), 
the multiple imputation method (based on generalized estimated 
equations) and the generalized equation method of weighted 
estimates (MI-GEE vs. WGEE)] for dealing with missing data in 
unbalanced repeated measures designs. They conclude that MI-
GEE is the most robust for type I error rates with MAR and that 
CPM-T and CPM-U control these properly, while WGEE tends 
to infl ate them. On the other hand, when missingness is NMAR, 
all show high type I error rates. With regard to statistical power, 
procedures based on covariance structures are clearly more 
powerful than MI-GEE and WGEE.

In the context of hierarchical and multigroup models, Vallejo et 
al. (2014) compared the effectiveness of AIC and BIC with other 
selectors (AICc, BIC, CAIC and HQIC) manipulating the intraclass 
correlation variables, number of groups, group size, parameter 
value and slope intercept covariance. They conclude that none of 
them functions correctly in all conditions or is consistently better 
than the others. Likewise, they indicate that AIC or AICC are more 
recommended when independent random effects are assumed, 
whereas BIC and AIC are more consistent when they are assumed 
dependent.

Next, in the context of the analysis of longitudinal data with 
incomplete measures and arbitrary covariance structures, Vallejo 
et al., (2018) report that with MAR, four repeated measures and 
homogeneity of variances, the CPM-U method (mixed linear 
model) controls type I error rates slightly better and exhibits 
higher power levels than the Brown-Forsythe procedures based 
on multiple imputations (MI-MBF), original data (OD-MBF) 
and complete cases (CC-MBF). However, if the homogeneity of 
variance is violated, MI-MBF better controls type I error rates 
(more conservative with four and six measures and liberal with 
eight) and shows similar power levels to the remaining procedures 
(except with OD-MBF and homogeneous variances). A similar 
pattern occurs with six and eight measures, although the control 
of type I error rates and power tends to worsen under conditions 
of heterogeneity.

Given the impact of the latter on different procedures, Vallejo 
et al., (2019) propose the solution of estimating the sample size 
necessary to reach power levels of 0.80 based on the ordinary least 
squares method and the empirical method of REML in multilevel 
designs for interaction effects with complete and incomplete data 
vectors (with homogeneous and heterogeneous variances at levels 
1 and 2), relative bias levels (theoretical and empirical) and a 
MAR mechanism. The results show that if there is heterogeneity 
of variances and incomplete data vectors, larger sample sizes are 
required to reach the nominal power of 0.80, and to make more 
accurate estimates and more realistic conclusions.

Regarding the adjustment of various covariance structures 
using selection criteria under different conditions that can be 
generalized to multivariate contexts (Fernández et al., 2010), 
Livacic-Rojas et al., (2013) report that different studies show 
that, under different analytical conditions, AIC better selects the 
underlying structure of the data than BIC (48.13 versus 41.63% 
on average). However, a comparison of the frequency of selection 
of covariance structures (from 12 possible ones) and type I error 
rates between AIC and the correctly identifi ed model (CIM) in a 
repeated measures design (p=3; q=4) with complete vectors, three 
covariance structures (RC, ARH, UN), three group sizes (30, 45, 
60) and the relationship between the covariance structure and the 
group size (null, positive and negative) found that AIC selects the 
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original covariance structure on 2% of occasions and that it does so  
on 48% of occasions for the heterogeneous version with slightly 
higher type I error rates.

Finally, associated with the previous study with similar 
manipulated variables, normal and non-normal distributions, 
complete vectors and truncated means, Livacic-Rojas et al., (2017) 
compared the sensitivity of AIC, MCI and MBF (Modifi ed Brown 
Forsythe). They report that MBF functions better than AIC and 
CIM (correctly identifi ed model) when the groups are small (n = 
30), the relationship between covariance matrices and sample size 
is negative and there is a UN matrix for all types of effects.

Based on the background presented here, the objective of 
this paper is to analyze the effectiveness of different information 
criteria (AIC, AICc, BIC, CAIC and HQIC) to select the covariance 
structure when there are missing data in three different scenarios. 
It should be noted that with respect to previous studies, our study 
incorporates three missingness mechanisms (MAR, MCAR and 
NMAR), with a repeated measures design (p=2; q=5), different 
sample sizes (50, 100 and 120), homogeneity and heterogeneity 
of covariance matrices (1-3; 1-5) and their different types of 
relationship.

Method

A partially repeated measures design with two groups (p=2) 
and fi ve measures (q=5) was used in a two-stage process. In the 
fi rst stage, the following variables were manipulated: a) the model 
complexity; b) total sample size; c) equality, inequality and the 
type of dispersion matrices; d) the non-response mechanism and 
the type of missing data pattern. In the second stage, two more 
variables were added: e) heterogeneous matching of covariance 
matrices and sample size (null, positive and negative); f) non-
normal distribution of data.

Variables manipulated in the two studies

Study one:

(a)  Complexity of the model used to generate the data: 
a three-stage study was conducted. In the fi rst stage, 
discriminating between MCAR, MAR and MNAR non-
response patterns, the covariance structure was kept 
constant and the mean structure was adjusted. In the 
second stage, the mean structure was assumed known 
and the covariance structure was adjusted. In the third 
stage, both structures were adjusted at the same time. The 
following regression model was used in each of the studies:
 E Yijk( ) = 0 + 1Trtij + 2Timeik + 3Trt ij Timeik , where 

y
ijk
 represents the response given by the ith subject i = 1, 

…, n
j
  of the j-th group on the k-th occasion k = 1, …, t

i
 

Trt
ij
 denotes an indicator variable for the ith subject in the 

j-th treatment group and   Time
ik
 the corresponding time 

points. In addition, the adjustment of the mean structure 
required the generation of the data from an additive model 
(without Trt

ij
 · Time

ik
 interaction) and a non-additive model 

(with interaction). In both models, the magnitude of the 
regression coeffi cients was selected, attempting to ensure 
that the null hypotheses referring to fi xed effects (complex 
case) or to the fi xed design effect (simple case) were 

rejected in 80% of cases with a 95% confi dence level. The 
value of the parameters that satisfy the aforementioned 
power was obtained using numerical techniques and the 
PROC MIXED module of the SAS program.

(b)  Total sample size: For each t value, three total sample sizes
  n = n jj

g

 
were considered (n = 50, n = 100 and n=120) as 

being representative of research in psychology or clinical 
trials.

(c)  Pairing of covariance matrices and group size: When the 
design is balanced, the relationship between the size of the 
dispersion matrices and the group size is null. When the 
design is unbalanced, the relationship can be positive or 
negative. A positive relationship implies that the smallest 
group is associated with the smallest dispersion matrix, 
while a negative relationship implies that the smallest 
group is associated with the largest dispersion matrix.

  For the different-sized groups the confi guration was: (a) 
20-30, 30-20, 10-40, 40-10 (n = 50); (b) 40-60, 60-40, 20-
80, 80-20 (n = 100) and; (c) 50-70, 70-50, 30-90, 90-30 (n 
= 120).

(d)  Equality of dispersion matrices: The performance of the 
selection criteria was evaluated with homogeneous and 
heterogeneous covariance matrices available in SAS 
and, in the fi rst case, the elements of the two dispersion 
matrices were equal to each other =2 1 . In accordance 
with the work of Livacic-Rojas et al., (2013), the following 
matrices were used: random coeffi cients (RC) for Scenario 
1, and fi rst order autoregressive heterogeneous (ARH), 
Toeplitz (TOEP) and Unstructured (UN) for Scenarios 2 
and 3. 

(e)  Non-response mechanism and type of missing data 
pattern:

 1.  MCAR with monotone missing data pattern: Two 
situations were specifi ed. In the fi rst, the MCAR process 
was denoted with a time-independent monotone missing 
data pattern (MCAR/IMP); subject i was not observed 
on either occasion k or the following occasions if U

ijk
 < 

π. In the second, the MCAR process was denoted with a 
time-dependent monotone missing data pattern (MCAR/
DMP); subject i was not observed on either occasion k 
or the following occasions if  U

ijk
 < π

k
.

 2.  MAR with monotone missingness pattern: Two 
situations were specifi ed. In the fi rst, MAR was denoted 
with a monotone time-independent missingness pattern 
(MAR/IMP), subject i was not observed on occasion 
k or on the following occasions, if U

ijk
 < ϕ (Y

ijk-1
 + δ) 

where U
ijk

  is a uniformly distributed random variable. 
In this case, δ = ϕ-1(π)21/2, where ϕ-1(·) is the inverse 
distribution or quantile function of the loss ratio π. In 
other words, R

ijk
 = 0  R

iju
 = 0, ∀u > t. In the second, 

MAR was denoted with a time-dependent monotone 
missingness pattern (MAR/DMP), subject i was not 
observed on occasion t or on the following occasions, if  
U

ijk
 < ϕ(Yijk + δ

k
).

 3.  MNAR with monotone missing data pattern: Two 
situations were specifi ed. In the fi rst, MNAR was 
denoted with a monotone time-independent missingness 
pattern (MNAR/IMP); subject i was not observed on 
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occasion k or on subsequent occasions if U
ijk

 < ϕ(Y
ijk

 
+ δ). In the second, MNAR was denoted with a time-
dependent monotone missingness pattern (MNAR/
DMP); subject i was not observed on occasion k or on 
subsequent occasions if U

ijk
 < ϕ(Y

ijk
 + δ

k
). 

 (f)  Form of the distribution of the measurement variable: 
Although the MML is based on compliance with the 
normality assumption, when working with real data it is 
common for the indices of asymmetry (γ

1
) and kurtosis 

(γ
2 ) 

to deviate from zero (Micceri, 1989), which may 
lead to an incorrect interpretation of the results. In this 
case, the population distributions was the multivariate 
normal distribution (γ

1
 &  γ

2
 = 0). The following 

procedures were used in generating the data:

Normal case: In each treatment group, continuous longitudinal 
data were generated using the method of Ripley (1987). This 
procedure was performed in two steps:

1.  Generation of z
ij
 pseudo-random observation vectors with 

E(z
ij
) = 0 and Cov(z

ij
)= from a normal distribution, where I 

is the identity matrix. These vectors were obtained by means 
of the RANNOR function in SAS.

2.  Creation of complete data sets  y
ij
, multiplying the vector 

z
ij
 by the Cholesky decomposition L

i
, that is y

ij
 = ß

j
 + L

I
z

ij
, 

where y
ij
 is a vector of length t for (i,jk)-th subject, ß

j
 is a 

vector of dimension p containing the fi xed effects of the 
population and L

I
 is a lower triangular matrix of dimension 

t satisfying ∑
I
 = L

I
L’I, I=1,.,6 or 12.

Study 2: 

Equally, in addition to the variables a, b, c, d and e from study 
one, the following variables were manipulated:

(f)  Inequality of dispersion matrices: The elements of one of 
the matrices were three and fi ve times greater than those of 
the other ∑

2
 = 5∑

1
 with the same conditions and matrices 

as indicated in point d. 
(g)  Form of the distribution of the measurement variable: In 

this case, the population distributions was a moderately 
skewed distribution with parameters equivalent to 
nonnormal distributions (γ1 =4; γ2 =42), Laplace (γ1 =2; 
γ2 = 6), log normal (γ1 =1.7501897; γ2 = 5.8984457) 
and exponential (γ1 =6.1848771; γ2 = 110.93639). In this 
analytical context, the non-normal distribution with (γ1 =4; 
γ2 =42) has been used to assess the impact that moderate 
bias and peak indexes would have on the performance of 
the fi ve information criteria.  

The following procedures were used in generating the data:

Non-normal case: Non-normal multivariate data were generated 
using the power method developed by Fleishman (1978) and 
extended to multivariate situations by Vale and Maurelli (1983). 
This procedure involved the following steps:

1.  Calculating a weight vector w = [a b c d]’ with the desired 
indices of asymmetry and kurtosis for each distribution, 
using the Fleishman power method.

2.  Calculating an appropriate intermediate correlation matrix, 
R

1
, solving for all possible pairs of repeated measures with 

the following third order polynomial equation: R
xkxk’

 = 
ρ

ZkZk´
(b2 + 6bd + 9d2) + ρ2

ZkZk’
2c2 + ρ3

ZkZk’
6d2, where ρ

ZkZk´
  

is the correlation coeffi cient between two standard normal 
variables and X

k
 = (a + bZ

k
 + cZ2

k
 + dZ3

k
) and X

k’ 
= (a + bZ

k’
 

+ cZ2
k’ 

+ dZ3
k’
) are the two correlated non-normal variables.

3.  Factoring the intermediate correlation matrix R
1
 to generate 

a vector of multivariate random normal variables with the 
prescribed ρ

ZkZk´
 , that is, x

ij
 = M

I
z

ij
 where x

ij
 denotes the 

vector of variables transformed with E(x
ij
) = 0 and Cov(x

ij
) 

= R
I
 and M

I
 is the lower triangular matrix obtained by 

Cholesky decomposition, with the property R
I
 = M

I
M’

I
.  

4.  Transforming the variables generated in the previous step 
so that they take the desired distribution form, as well as the 
desired fi xed effects and variances, that is, y

ij
 = ß

j
 + D

I
(X·

ij
w), 

where D
I
 is a diagonal matrix containing the standard 

deviations of the covariance matrix ∑
I
 and X·

ij
 = [1

k
x

ij
x2

ij
x3

ij
]. 

In the line of studies about non normal distributions, the 
reader can also consult  Blanca et al., (2013) and Bono et al., 
(2017; 2020).

Finally, the information criteria used are described in the works 
of Livacic-Rojas et. al., (2013; 2017) and Vallejo et al., (2014).

Results

In study 1, the results of Table 1 (normal distribution with 
homogenous relationship between the size of the group and 1-1 
variances) in scenario 1 (RC matrix) show high power levels 
(80% or higher, Aberson, 2019) for the fi ve information criteria 
in all the analyzed conditions.  However, in scenario 2 under ARH 
matrix, higher power is observed for HQICR, BICR and CAICR 
criteria (60% of the analyzed conditions) for all the missing data 
mechanisms.  In turn, under TOEP matrix, the AIC and AICCR 
criteria are effi cient in 35% of the analyzed conditions, whereas 
under UN matrix these work well in 15% of the occasions for the 
Complete Cases and MCAR missingness mechanisms.  In scenario 
3, under ARH matrix, power is high in 60% of the conditions 
analyzed for HQICR, BICR and CAICR criteria with all the 
missingness mechanisms.  In turn, under TOEP and UN, power 
levels are high in 55% and 35% of the conditions with AIC and 
AICCR criteria in all mechanisms.

In turn, Table 2 (normal distribution, with group heterogeneous 
relationships and 1-3; 1-5 variances) shows values similar to 
the table above, whereas power is slightly higher when the 
heterogenous relationship is 1-5. In scenario 2, all the criteria show 
high power in ARH matrix in 93% of the conditions analyzed with 
all the mechanisms.  In turn, under TOEP matrix, AIC and AICCR 
criteria work well in 23% of the conditions analyzed with Complete 
Cases, MAR and MCAR mechanisms and the two heterogeneous 
relationships.  On the other hand, in scenario 3, under ARH, 
the HQICR, BICR and CAICR criteria are effi cient with all the 
missingness mechanisms in 50% of the conditions and the two 
heterogeneous relationships. However, in TOEP and UN matrices, 
the AIC and AICCR criteria work better, with all the missingness 
mechanisms and the two heterogeneous relationships in 20% and 
38% of the conditions, respectively. 

On the other hand, in study 2, when the distribution is non-
normal (γ

1
=4; γ

2
=42 and, with heterogeneous relationships 
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between groups and 1-3; 1-5 variance),  Table 3 shows high power 
only in scenario 1 (RC matrix) in 98% of the analyzed conditions 
(under RC matrix) and associated to all the information criteria, 
missingness mechanisms and heterogeneous relationships. In 
scenario 2, criteria are ineffi cient in 100% of reported conditions.  
Finally, in scenario 3, under the UN matrix, the AIC and AICCR 
criteria are effi cient in 20% of the occasions with Complete, 
MCAR, NMAR criteria and 1-5 heterogenous relationship. 

In turn, table 4 (Laplace distribution), shows in scenario 1 (RC 
matrix) high power in 97.5% of the conditions for all the information 
criteria, missingness mechanisms and heterogeneous relationships.  
In scenario 2, criteria are ineffi cient in 100% of the reported 
conditions.  In turn, in scenario 3, under ARH matrix, power is 
high in 2.5% of the conditions with CAICR criterion, the MCAR 
mechanism and 1-5 heterogeneous relationship. Subsequently, 
under UN matrix, power is high in 27.5% of the conditions with 
AIC and AICCR criteria, the Complete Cases mechanisms, MCAR, 
NMAR and the two heterogeneous relationships.  

In turn, table 5 (normal Log distribution), in scenario 1 (RC 
matrix), the criteria are effi cient in 100% of reported conditions. 
In scenario 2, under ARH matrix, power is high in 30% of the 
conditions analyzed with HQICR, BICR and CAICR criteria, 
all the missingness mechanisms and the two heterogeneous 
relationships.  Under TOEP, power is high only in 2.5% of the 
conditions with AIC criterion, the Complete Cases mechanism 
and 1-5 heterogeneous relationship.  In scenario 3, associated to 

ARH, power is high only in 2.5% of the conditions with HQICR, 
BICR, CAICR criteria, all the Complete Cases missingness 
mechanisms and the two heterogeneous relationships.  For the UN 
matrix, power is high in 30% of the conditions with AIC, AICCR 
criteria, all Complete Cases missingness mechanisms and the two 
heterogeneous relationships. 

Finally, Table 6 (Exponential distribution) shows high power in 
scenario 1 (RC matrix) in all conditions analyzed for all criteria, 
mechanisms and the two heterogeneous relationships.  In scenario 
2, the criteria are ineffi cient in 100% of reported conditions.  In 
scenario 3, power is high in 17.5% of conditions analyzed under 
UN matrix with AIC and AICC criteria, Complete Cases, MCAR 
and the two heterogenous relationships.  

Discussion 

In the present study the sensitivity levels of fi ve information 
criteria have been analyzed to select covariance structures when there 
are different missingness mechanisms in three different scenarios. 

In study 1, scenario 1 (maintaining constant matrix and mean 
adjustment) the fi ve information criteria work well to discriminate 
the covariance structure for missing data with the different 
mechanisms. In scenarios 2 (constant mean and matrix adjustment) 
and 3 (constant mean and matrix), a similar situation is observed, but 
with higher effi ciency under ARH matrix.  Subsequently, when the 
relationships between groups and variances are heterogeneous, in 

Table 1
Average statistical power levels for samples of 50, 100 and 120 cases in three different scenarios with normal distribution (γ

1
=0; γ

2
 =0) and relationship of groups with 

homogeneity of variance (1-1)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C AIC 1-1 95.1 71.5 80.7 89.8 76.5 89.8 90.3

AICCR 1-1 95.1 75.9 84.1 87.3 78.8 90.7 87.7

HQICR 1-1 94.5 95.8 81.2 65.2 95.7 82.7 65.3

BICR 1-1 94.5 98.6 80.4 44.6 99.0 80.7 44.7

CAICR 1-1 93.5 98.8 68.2 25.6 99.7 71.6 25.7

MAR AIC 1-1 95.4 69.1 76.7 79.4 76.0 82.8 80.4

AICCR 1-1 95.4 73.2 78.4 75.5 78.5 83.1 76.7

HQICR 1-1 95.3 91.2 76.5 56.2 92.7 77.9 57.3

BICR 1-1 95.4 98.5 57.2 21.1 98.8 56.1 21.8

CAICR 1-1 94.7 99.4 41.9 8.34 99.5 40.9 9.19

MCAR AIC 1-1 95.3 69.2 80.1 82.0 76.1 85.5 85.5

AICCR 1-1 95.3 73.1 82.1 78.9 78.5 86.1 82.1

HQICR 1-1 95.2 91.7 83.0 63.3 92.8 83.8 65.7

BICR 1-1 94.7 98.8 64.9 31.8 98.9 65.4 30.8

CAICR 1-1 93.6 99.1 53.6 17.8 99.3 53.5 18.7

NMAR AIC 1-1 95.6 68.5 76.8 79.5 76.1 83.7 80.8

AICCR 1-1 95.6 72.1 78.5 76.8 78.2 83.8 77.8

HQICR 1-1 95.5 91.6 77.4 57.0 92.9 78.8 56.1

BICR 1-1 94.8 98.5 55.5 21.4 98.7 58.7 21.6

CAICR 1-1 93.8 99.5 41.5 8.83 99.6 44.8 8.93

Legend: mechanism (M); complete case (C); missing at random (MAR); missing completely at random (MCAR); not missing at random (NMAR); IC (information criterion); AIC (Akaike 
information criterion); AICCR (Akaike information criterion, corrected robust); BICR (Bayesian information criterion, robust); HQICR (Hannan-Quinn information criterion, robust); CAICR 
(consistent Akaike information criterion, robust); HBGM (homogeneous relation between group matrices 1-1); Scenario 1 (S1); Scenario 2 (S2); Scenario 3 (S3); random coeffi cients (RC); 
autoregressive heterogeneity (ARH); Toepliz (TOEP); unstructured (UN); γ

1
= Skewness; γ

2
 =Kurtosis
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scenario 2, AIC shows slightly higher power than the other criteria, 
whereas in scenario 3 these are observed in association with HQICR, 
BICR and CAICR,  and all the missingness mechanisms. These 
results coincide with those of Vallejo et., (2011a; 2014; 2019) and 
Livacic-Rojas et al., (2013; 2017). Notwithstanding the foregoing, 

it is important for researchers to take these results with caution 
because heterogeneous variances impact negatively, increasing the 
error, which affects parameter estimation (Raghunathan, 2016). 
Moreover, the results of Scenario 1 are unrealistic in psychology 
research that uses repeated measures designs in applied settings.

Table 2
Average statistical power levels for samples of 50, 100 and 120 with normal distribution (γ

1
=0; γ

2
 =0) and relationship groups-heterogeneity of variance (1-3; 1-5)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C

AIC
1-3
1-5

90.1
85.8

84.2
84.2

88.7 75.0 64.2 81.8 90.8

89.6 76.6 53.3 83.8 88.4

AICCR
1-3
1-5

90.1
85.8

87.8
87.9

84.2 63.4 67.1 83.8 88.4

86.2 66.7 56.0 75.8 88.4

HQICR
1-3
1-5

90.0
85.5

95.4
97.2

72.5 35.6 86.2 88.6 77.6

74.1 38.6 78.5 84.7 79.3

BICR
1-3
1-5

89.3
85.3

92.9
99.6

39.2
39.7

2.85
3.85

96.8
93.6

78.3
77.1

48.7
50.9

CAICR
1-3
1-5

88.2
83.4

86.3
99.2

17.6
19.3

0.21
0.34

99.0
97.3

67.3
66.7

30.1
33.7

MAR

AIC
1-3
1-5

91.1
84.5

85.6
84.6

88.8
87.0

67.5
65.2

61.4
46.8

79.3
65.6

89.1
90.3

AICCR
1-3
1-5

91.1
84.5

88.8
88.4

86.1
84.4

56.3
52.4

63.3
48.9

81.1
68.5

87.0
88.5

HQICR
1-3
1-5

91.1
84.4

98.6
98.8

56.5
52.5

18.2
18.8

85.7
76.3

82.9
77.8

66.2
71.1

BICR
1-3
1-5

91.1
84.3

99.2
100

6.30
8.10

0.34
0.35

97.9
94.1

61.7
58.0

30.3
36.3

CAICR
1-3
1-5

91.1
84.1

96.8
100

0.90
1.80

0.00
0.00

99.0
97.3

41.3
39.5

13.5
19.1

MCAR

AIC
1-3
1-5

89.0
86.0

79.6
82.2

79.8
81.6

68.7
70.4

63.8
52.2

77.4
69.2

86.9
88.2

AICCR
1-3
1-5

88.9
86.0

82.6
87.1

74.7
76.5

55.6
57.9

66.5
55.5

79.1
71.5

83.8
85.7

HQICR
1-3
1-5

88.8
85.8

88.7
96.4

57.8
59.5

25.0
28.1

85.5
77.4

80.5
76.9

68.8
71.4

BICR
1-3
1-5

88.1
85.1

96.4
98.6

36.8
18.9

16.9
1.59

92.1
93.1

83.6
63.2

50.9
40.0

CAICR
1-3
1-5

87.1
84.2

75.7
97.3

4.19
4.85

0.05
0.08

98.9
97.1

50.7
50.2

19.0
22.8

NMAR

AIC
1-3
1-5

88.1
85.9

80.3
81.4

75.7
77.0

62.6
64.0

63.2
50.7

74.6
65.1

82.6
84.5

AICCR
1-3
1-5

88.0
86.0

84.8
85.8

70.7
71.6

49.2
50.9

66.4
54.0

75.9
67.2

78.9
81.3

HQICR
1-3
1-5

88.0
85.7

92.3
96.1

48.7
51.1

18.7
21.0

85.5
76.6

75.4
71.6

60.9
64.7

BICR
1-3
1-5

87.3
84.9

86.8
98.4

9.68
10.8

0.47
1.01

96.7
92.4

55.3
55.0

26.5
32.1

CAICR
1-3
1-5

86.3
83.7

77.4
97.1

1.85
2.40

0.00
0.08

98.7
96.8

40.4
40.4

12.4
16.7

Legend: mechanism (M); IC (information criterion); HBGM (heterogeneous relation between group matrices 1-3; 1-5); complete case (C); missing at random (MAR); missing completely at 
random (MCAR); not missing at random (NMAR); AIC (Akaike information criterion); AICCR (Akaike information criterion, corrected robust); BICR (Bayesian information criterion, robust); 
HQICR (Hannan-Quinn information criterion, robust); CAICR (corrected Akaike information criterion, robust); Scenario 1 (S1); Scenario 2 (S2); Scenario 3 (S3); random coeffi cients (RC); 
autoregressive heterogeneity (ARH); Toepliz (TOEP); unstructured (UN); γ

1
= Skewness; γ

2
 =Kurtosis
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On the other hand, there are two different analytical contexts 
in study 2. On one hand, with (non-normal with γ

1
=4; γ

2
=42, 

Lapalce and Exponential) distributions, power is high in scenario 
1 for most information criteria, missingness mechanisms and two 
heterogenous relationships.  In turn, in scenario 3 under the UN 
matrix, the AIC and AICCR criteria are effi cient with Complete 
Cases, MAR, MCAR and NMAR mechanisms.  On the other hand, 
with Log normal distribution, in scenario 1 the situation is similar 

to previous distributions. In scenario 2, under ARH matrix, power 
is high with BICR and CAICR criteria, all missingness criteria and 
heterogenous relationships.  In scenario 3, associated to UN, there 
is high power with AIC and AICCR, all missingness mechanisms 
and heterogeneous relationships. These results coincide in part with 
those of Vallejo et. al., (2014; 2018; 2019); Livacic Rojas et. al., 
(2013; 2017), but are in the opposite direction to the indications of 
Vallejo et. al., (2011a; 2011b) since the greater the heterogeneity, 

Table 3
Average statistical power levels for samples of 50, 100 and 120 with non-normal (γ

1
=4; γ

2
 =42) and relationship groups-heterogeneity of variance (1-3; 1-5)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C

AIC
1-3
1-5

97.0
86.9

19.8
15.8

57.8
59.8

74.9
77.6

17.8
14.7

29.2
24.0

86.9
88.5

AICCR
1-3
1-5

97.0
86.8

23.3
18.9

55.7
58.5

64.4
68.5

19.2
16.0

30.5
26.1

83.3
86.1

HQICR
1-3
1-5

96.7
86.7

37.4
34.9

49.2
53.6

41.6
46.3

32.3
27.8

42.9
39.1

71.6
74.8

BICR
1-3
1-5

96.2
85.3

55.2
61.0

29.8
30.1

12.7
11.5

46.9
45.8

52.6
48.6

51.1
48.6

CAICR
1-3
1-5

94.1
83.9

62.6
71.4

12.5
16.2

2.35
4.15

60.0
55.0

47.8
46.9

31.3
34.9

MAR

AIC
1-3
1-5

86.4
86.8

22.6
24.0

48.8
50.2

66.3
68.7

22.0
19.2

30.0
26.0

78.7
79.7

AICCR
1-3
1-5

86.9
86.7

26.5
28.4

46.1
47.4

54.0
57.2

23.8
20.8

31.4
27.9

75.4
76.6

HQICR
1-3
1-5

86.0
86.5

42.0
46.8

34.1
35.0

29.9
31.0

38.8
35.3

41.6
37.3

58.0
60.5

BICR
1-3
1-5

84.9
85.4

56.0
69.0

8.63
8.56

5.33
4.80

58.3
54.7

41.1
36.9

31.2
32.4

CAICR
1-3
1-5

83.7
84.0

56.7
74.0

1.99
2.18

2.07
0.85

67.7
64.8

34.0
29.4

16.4
19.3

MCAR

AIC
1-3
1-5

84.3
86.1

16.8
18.0

48.3
51.3

70.7
71.7

18.4
15.5

28.4
23.7

83.3
83.8

AICCR
1-3
1-5

79.7
86.0

19.3
21.5

42.5
49.1

55.4
60.6

18.8
16.8

28.8
25.5

75.3
80.8

HQICR
1-3
1-5

84.1
85.7

35.3
38.0

36.1
40.0

37.8
36.5

33.9
29.3

41.5
36.0

65.6
64.9

BICR
1-3
1-5

83.2
84.6

54.8
62.2

11.8
14.3

10.8
7.07

52.7
47.5

43.5
39.4

37.5
37.5

CAICR
1-3
1-5

81.2
83.3

59.6
71.9

3.58
4.74

5.31
1.82

62.5
57.4

37.2
34.5

23.6
23.7

NMAR

AIC
1-3
1-5

84.2
86.8

21.0
23.4

46.5
50.0

65.4
68.3

21.8
18.6

31.0
25.8

79.9
81.1

AICCR
1-3
1-5

84.1
86.8

24.9
27.7

44.6
47.6

54.2
57.1

23.4
20.0

32.7
27.6

76.5
78.1

HQICR
1-3
1-5

83.8
86.6

39.9
43.4

32.5
35.5

28.1
32.1

38.1
33.8

42.5
37.5

59.7
61.9

BICR
1-3
1-5

82.8
85.6

56.6
63.2

7.56
9.05

3.68
4.92

57.1
52.5

40.5
37.6

30.5
34.4

CAICR
1-3
1-5

81.6
84.2

58.6
70.7

1.79
2.20

0.59
0.91

66.7
61.6

32.3
30.3

17.6
20.6

Legend: Same as Table 2
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the lower the power levels expected. They should also be taken with 
caution because the missingness pattern considered is monotone, 
which might not be the case if this situation were to change.  

For applied studies, researchers are advised that if they detect 
missing data, they should use the information criteria to detect the 
covariance structure that underlies the data in order to apply more 
appropriate methods for parameter estimation. Regarding this 
point, Leke et al., (2019) note that imputation methods (individual 

or multiple) are very viable in the social sciences. However, it is 
important to consider that multivariate methods tend to assume 
that the missingness mechanisms are MCAR or MAR with 
monotone patterns (Little & Rubin, 2020) and that it is uncommon 
for the missingness mechanism to be estimated with some degree 
of confi dence (Funatogawa et al., 2019). If the mechanism were 
NMAR, biased results and wrong predictions would be expected 
to be produced (Liu, 2016). On a similar note, since the structure of 

Table 4
Average statistical power levels for samples of 50, 100 and 120 with Laplace (γ

1
 =2;  γ

2
 = 6) and relationship groups-heterogeneity of variance (1-3; 1-5)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C

AIC
1-3
1-5

86.0
88.2

19.3
14.8

54.4
58.4

72.7
69.4

17.0
14.1

9.92
22.3

86.6
87.9

AICCR
1-3
1-5

81.3
88.2

20.4
17.9

49.6
55.5

60.5
61.3

16.6
15.5

9.86
24.4

80.0
85.8

HQICR
1-3
1-5

85.7
87.9

33.9
32.0

46.5
49.5

42.4
43.8

29.9
26.0

12.6
36.5

73.2
72.8

BICR
1-3
1-5

84.8
86.8

53.0
56.1

25.3
27.2

9.71
17.2

47.5
41.1

13.7
46.3

47.4
46.8

CAICR
1-3
1-5

83.3
85.2

59.0
67.7

12.0
13.1

2.78
11.6

57.6
49.2

12.4
44.7

32.7
32.4

MAR

AIC
1-3
1-5

85.5
87.7

18.9
21.2

48.0
48.3

67.5
68.1

20.7
17.7

25.4
24.5

80.2
80.8

AICCR
1-3
1-5

85.4
88.6

22.4
25.9

45.5
46.1

55.3
57.3

22.3
18.8

27.4
26.4

77.0
78.1

HQICR
1-3
1-5

85.1
88.3

35.9
43.6

35.3
35.6

29.9
32.8

36.9
32.5

37.0
36.4

60.4
61.7

BICR
1-3
1-5

83.9
87.0

52.1
65.3

11.8
10.1

4.13
5.15

55.9
51.4

37.9
37.1

31.9
34.2

CAICR
1-3
1-5

82.2
85.4

54.6
72.3

3.92
2.88

0.72
1.19

65.2
61.0

31.1
31.1

18.2
20.6

MCAR

AIC
1-3
1-5

85.7
88.8

15.0
15.5

45.8
48.1

69.8
72.9

16.7
38.7

25.8
21.8

82.7
84.3

AICCR
1-3
1-5

85.7
88.7

18.2
19.2

43.7
46.0

58.1
63.8

18.1
41.5

28.1
23.6

79.6
81.6

HQICR
1-3
1-5

85.5
88.4

31.8
34.4

34.4
37.7

33.2
39.5

30.0
60.7

39.2
33.6

65.0
68.1

BICR
1-3
1-5

84.4
87.3

51.0
58.9

11.4
13.9

5.59
8.66

49.0
77.8

41.1
37.8

37.7
40.8

CAICR
1-3
1-5

83.0
85.7

56.7
69.5

3.41
4.42

1.22
2.78

58.5
83.2

35.3
33.4

23.1
26.9

NMAR

AIC
1-3
1-5

86.3
86.2

18.3
20.9

46.6
47.8

68.4
69.0

19.9
17.5

28.2
25.8

80.5
81.6

AICCR
1-3
1-5

86.2
85.7

22.2
22.7

43.6
46.2

57.0
57.4

21.6
18.8

30.1
26.5

77.1
78.8

HQICR
1-3
1-5

85.0
85.5

36.9
37.6

31.2
35.6

32.2
32.2

35.6
31.8

39.9
35.5

60.9
63.8

BICR
1-3
1-5

82.0
84.4

54.1
58.7

7.25
9.59

6.64
5.53

54.0
50.0

40.2
37.3

32.3
35.6

CAICR
1-3
1-5

79.5
83.2

58.2
66.8

1.65
2.58

2.49
1.20

63.5
60.1

32.8
30.7

18.9
21.8

Legend: Same as Table 2
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single-level data hinders appropriate analysis with missing values   
(Heck & Thomas, 2020), it is recommended to use multilevel 
models with larger sample sizes in order to have more effi cient 
estimators (Vallejo et al., 2019).

Finally, it would be appropriate for future studies to analyze the 
behavior of different information criteria in selecting covariance 
structures, considering the percentage of missing data, the effect 
size, larger samples, the relationship between the matrices and the 

more heterogeneous groups (Grissom et al., 2012), and other non-
normal distributions.
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Table 5
Average statistical power levels for samples of 50, 100 and 120 with log normal distribution (γ

1
 =1.7501897;   γ

2
 = 5.8984457) and relationship groups-heterogeneity of 

variance (1-3; 1-5)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C

AIC
1-3
1-5

84.7
85.6

47.5
43.8

77.2
81.9

75.4
76.5

35.1
28.3

51.9
43.8

89.6
89.8

AICCR
1-3
1-5

84.7
85.6

50.8
50.0

74.2
78.7

64.8
65.6

37.4
30.9

55.2
46.9

87.2
87.4

HQICR
1-3
1-5

84.6
85.3

71.3
72.7

65.9
69.1

40.9
41.0

57.2
49.5

70.1
64.3

75.5
75.3

BICR
1-3
1-5

83.9
84.5

82.9
91.6

38.3
38.1

11.2
6.64

73.1
72.2

67.5
70.3

47.9
47.8

CAICR
1-3
1-5

83.0
83.4

82.5
95.3

19.5
19.9

2.97
1.12

86.0
81.4

63.7
64.3

30.4
31.1

MAR

AIC
1-3
1-5

86.0
84.5

50.6
53.0

69.3
69.6

63.8
67.5

40.7
33.7

53.2
44.7

80.2
81.5

AICCR
1-3
1-5

86.0
84.4

55.8
59.4

65.0
65.5

50.7
55.7

43.2
36.0

55.7
47.3

76.5
77.7

HQICR
1-3
1-5

85.8
84.2

73.6
80.0

47.0
47.7

22.0
30.8

64.5
56.9

64.2
57.1

58.1
59.5

BICR
1-3
1-5

85.2
83.4

77.3
91.9

11.0
11.1

1.08
6.86

83.5
78.3

53.9
49.8

26.9
27.9

CAICR
1-3
1-5

84.1
82.2

70.0
91.5

2.46
2.60

0.08
3.16

90.1
86.3

41.6
38.4

13.6
14.7

MCAR

AIC
1-3
1-5

85.3
84.3

44.1
44.6

70.5
72.4

69.1
70.6

35.3
30.5

49.5
42.7

85.0
86.4

AICCR
1-3
1-5

85.3
84.3

49.9
51.0

66.5
68.6

56.8
58.2

37.9
33.0

50.6
44.6

81.8
83.7

HQICR
1-3
1-5

85.1
84.0

70.4
73.6

51.4
53.5

28.5
31.2

58.6
53.4

62.0
56.5

67.1
69.1

BICR
1-3
1-5

84.3
83.2

80.6
91.5

15.2
17.2

2.30
3.12

79.3
74.9

56.5
53.5

36.2
39.8

CAICR
1-3
1-5

83.0
82.0

76.8
93.5

4.14
4.66

0.15
0.38

87.2
83.2

46.1
44.1

20.9
23.9

NMAR

AIC
1-3
1-5

85.3
84.9

48.7
52.2

64.4
69.4

64.5
67.1

39.6
33.2

52.0
43.3

81.6
82.8

AICCR
1-3
1-5

85.3
84.9

54.4
58.9

60.4
65.2

52.1
54.5

42.3
36.0

54.4
45.1

78.1
79.7

HQICR
1-3
1-5

85.1
84.8

73.1
79.1

45.2
47.1

22.8
26.6

63.1
56.6

63.1
55.6

60.4
63.6

BICR
1-3
1-5

84.4
84.0

79.9
92.5

14.2
11.0

1.39
2.17

82.3
77.8

52.2
48.6

28.9
33.3

CAICR
1-3
1-5

83.3
82.9

74.2
93.6

7.88
2.78

0.08
0.25

89.3
85.3

39.0
37.8

14.8
18.3

Legend: Same as Table 2
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Table 6
Average statistical power levels for samples of 50, 100 and 120 with exponential (γ

1
 =6.1848771;  γ

2
 = 110.93639) and relationship groups-heterogeneity of variance (1-3; 

1-5)

S1 S2 S3

M IC HBGM RC ARH TOEP UN ARH TOEP UN

C

AIC
1-3
1-5

88.4
92.2

5.36
5.07

31.7
34.2

76.1
76.5

8.33
7.13

14.3
12.8

85.5
83.1

AICCR
1-3
1-5

88.4
92.1

6.65
6.52

30.5
33.1

67.6
68.4

9.21
7.86

15.9
13.8

83.1
81.8

HQICR
1-3
1-5

87.4
91.8

13.1
13.3

26.4
30.1

49.1
50.9

16.1
14.3

24.3
21.3

70.8
70.7

BICR
1-3
1-5

87.0
90.6

25.3
27.6

15.3
18.8

17.3
20.4

27.8
25.0

33.1
28.0

48.1
48.4

CAICR
1-3
1-5

85.5
89.1

32.8
38.0

7.65
9.94

7.90
10.0

35.2
32.1

33.1
29.5

35.0
35.8

MAR

AIC
1-3
1-5

85.7
93.7

9.27
10.5

30.0
30.3

69.3
70.1

11.6
10.6

15.6
13.7

78.0
78.6

AICCR
1-3
1-5

85.6
93.6

11.2
12.7

28.6
27.9

59.0
60.5

12.7
11.4

16.7
15.1

75.0
75.9

HQICR
1-3
1-5

85.3
93.3

19.4
22.5

21.4
20.1

36.1
38.0

22.1
20.3

23.7
21.4

59.0
60.1

BICR
1-3
1-5

84.2
92.1

31.2
39.6

6.41
5.33

9.68
9.91

35.9
34.1

26.4
22.7

35.3
35.7

CAICR
1-3
1-5

82.5
90.4

36.4
48.1

1.70
1.92

2.59
3.46

45.3
43.0

22.2
18.7

21.8
23.9

MCAR

AIC
1-3
1-5

89.9
94.1

5.37
5.90

26.5
30.8

72.6
71.7

9.12
7.74

14.3
12.0

82.9
81.8

AICCR
1-3
1-5

89.9
94.0

6.94
7.65

25.6
29.0

63.4
62.4

9.95
8.64

15.5
13.2

80.6
79.2

HQICR
1-3
1-5

89.5
93.5

14.2
15.4

20.6
23.2

40.9
42.4

17.6
15.2

22.6
20.0

66.3
66.2

BICR
1-3
1-5

88.3
92.3

27.7
31.0

7.89
9.43

10.9
12.7

30.1
27.0

27.0
24.8

41.4
42.7

CAICR
1-3
1-5

87.1
90.4

35.6
41.4

2.96
3.62

4.06
4.99

37.9
35.3

23.8
22.7

28.8
30.1

NMAR

AIC
1-3
1-5

89.6
93.8

7.75
8.09

24.5
28.2

69.6
69.3

11.4
9.87

16.3
19.2

78.0
74.0

AICCR
1-3
1-5

89.6
93.8

9.58
9.99

23.3
27.0

58.7
61.0

12.3
10.6

17.7
20.2

75.1
71.8

HQICR
1-3
1-5

89.3
93.4

17.6
19.0

18.1
20.7

37.3
38.0

20.5
18.4

24.7
25.1

59.2
57.8

BICR
1-3
1-5

88.2
92.1

31.9
36.6

6.57
5.86

10.6
9.99

33.9
31.2

26.4
25.2

33.8
36.2

CAICR
1-3
1-5

86.3
89.5

37.2
37.8

3.62
7.52

4.58
15.3

42.6
34.0

22.0
19.7

21.9
35.3

Legend: Same as Table 2
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