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Antecedentes: La inteligencia artificial (IA) se utiliza crecientemente para mejorar las prácticas tradicionales de 
evaluación, aumentando la eficiencia, reduciendo costos y facilitando la escalabilidad. Sin embargo, su uso se ha 
limitado a grandes corporaciones, con escasa adopción por parte de investigadores y profesionales. Este estudio revisa 
críticamente las aplicaciones de la IA en la construcción de pruebas y propone guias prácticas para maximizar sus 
beneficios y abordar posibles riesgos. Método: Se realizó una revisión exhaustiva de la literatura para examinar los 
avances en aplicaciones basadas en IA en la construcción de pruebas, con énfasis en el desarrollo y calibración de ítems, 
y se incluyeron ejemplos del mundo real para mostrar su implementación práctica. Resultados: Las mejores prácticas 
para el uso de IA en el desarrollo de pruebas están en evolución, pero requieren supervisión humana. Para generar 
ítems se necesitan datos de calidad, alineación con el uso previsto, comparación de modelos y validación. Para calibrar, 
hay que definir el constructo, optimizar las instrucciones (prompts), verificar la alineación semántica, realizar análisis 
factoriales pseudoexploratorios y evaluar el ajuste del modelo. Conclusiones: Se propone una guía práctica que vincula 
los desafíos de validez, fiabilidad y equidad con recomendaciones para una implementación responsable y eficaz.
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RESUMEN 

Background: Artificial Intelligence (AI) is increasingly used to enhance traditional assessment practices by improving 
efficiency, reducing costs, and enabling greater scalability. However, its use has largely been confined to large 
corporations, with limited uptake by researchers and practitioners. This study aims to critically review current AI-based 
applications in test construction and propose practical guidelines to help maximize their benefits while addressing 
potential risks. Method: A comprehensive literature review was conducted to examine recent advances in AI-based 
test construction, focusing on item development and calibration, with real-world examples to demonstrate practical 
implementation. Results: Best practices for AI in test development are evolving, but responsible use requires ongoing 
human oversight. Effective AI-based item generation depends on quality training data, alignment with intended use, 
model comparison, and output validation. For calibration, essential steps include defining construct validity, applying 
prompt engineering, checking semantic alignment, conducting pseudo factor analysis, and evaluating model fit with 
exploratory methods. Conclusions: We propose a practical guide for using generative AI in test development and 
calibration, targeting challenges related to validity, reliability, and fairness by linking each issue to specific guidelines 
that promote responsible, effective implementation.
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Artificial Intelligence (AI) is being adopted globally at an 
unprecedented pace. ChatGPT alone reached 800 million weekly 
users by April 2025, achieving 90% of its current global user base 
in just three years. In comparison, the Internet took over 23 years to 
reach the same level of global adoption (Meeker et al., 2025). Most 
importantly, its capabilities are still evolving. The Organisation 
for Economic Co-operation and Development (OECD, 2025) 
established an independent committee of experts, which estimated 
that it has reached only about half of its full potential (OECD, 
2025). As AI continues to grow, finding ways to use it effectively 
while reducing potential risks is a major focus for governments, 
researchers, and practitioners. Educational and psychological 
assessments are no exception as AI is transforming how tests are 
designed, delivered, and interpreted.

Educational and psychological assessments are crucial for both 
individual and societal progress, as they support the identification 
of needs and the monitoring of progress over time. However, as 
emphasized in the Standards for Educational and Psychological 
Testing jointly developed by the American Educational Research 
Association (AERA), the American Psychological Association 
(APA), and the National Council on Measurement in Education 
(NCME), assessments must be relevant, valid, and fair to be effective 
(AERA, APA, & NCME, 2014). Historically, the improvement 
of these assessments has progressed alongside advances in 
methodology and technology. For example, in the 20th century, 
standardized testing provided a systematic method for evaluating 
the skills and knowledge of large populations (Sireci et al., 2025). 
Optical scanners later automated the scoring process, enhancing 
efficiency and reducing errors. Computer-adaptive testing (CAT) 
advanced the measurement field by adjusting test difficulty based on 
individual performance, optimizing the accuracy and relevance of 
assessments for each test-taker (Zenisky & Sireci, 2002). 

Traditional test development followed a rigorous process that 
typically began with defining the assessment purpose and construct to 
be measured, manually crafting assessment items, and refining them 
based on pilot studies and psychometric analysis (AERA et al., 2014; 
Downing & Haladyna, 2006; Lane et al., 2016; Muñiz & Fonseca-
Pedrero, 2019). While this systematic approach is still considered 
the gold standard for creating relevant, valid, fair measurement 
tools, it does have its drawbacks. Crafting assessment items 
manually is time-consuming and often expensive, particularly when 
done by experienced subject-matter experts (SMEs). Additionally, 
if the assessments’ purpose and construct are innovative and 
groundbreaking such as AI literacy or prompt engineering, finding 
the appropriate SMEs can be challenging, which limits accessibility 
for the broader research community (European Commission, OECD, 
& Code.org., 2025). Another common challenge is generating a 

sufficiently large pool of items from which to create parallel versions 
of tests to counteract item content becoming public online (Bißantz 
et al., 2024). Designing assessments that reflect test takers’ funds of 
knowledge and cultural backgrounds to enhance engagement, and 
performance is particularly challenging in traditionally developed 
assessments, due to rigid blueprints, administration conditions, 
and high development costs (Walker et al., 2023). Traditional test 
development is also at an increasing risk of assessing skills that 
humans routinely use machines to perform (Swiecki et al., 2022).

To address these limitations, researchers have long proposed the use 
of Automated Item Generation (AIG) and predicting item parameters 
based on item attributes. AIG enables the creation of diverse item 
versions based on item templates, reducing item reuse and improving 
cost efficiency (Bejar et al., 2002; Luecht, 2025). Similarly, statistical 
modeling approaches have been recommended for decades to estimate 
item complexity by assigning a difficulty score based on item attributes, 
allowing developers to systematically predict item performance without 
relying on extensive field testing (Embretson, 1983, 1999; Sheehan & 
Mislevy, 1994; Sheehan et al., 2006). These analytical methods offer 
the potential to streamline development by replacing large-scale pilot 
studies with model-based predictions. However, it is only with recent 
technological advancements in generative and representational AI using 
embeddings that these approaches are beginning to realize their full 
operational potential (see Table 1 for key operational definitions).

In recent years, the automation of test content generation 
has significantly streamlined the traditionally manual and costly 
development processes (Attali et al., 2022; Gierl & Haladyna, 2012; von 
Davier et al., 2024). Automated scoring systems are now routinely used 
for evaluating constructed responses - a task that previously required 
human judgment (von Davier et al., 2022; Yamamoto et al., 2019). 
When well-design prompts are used, large language models (LLM) 
can enhance efficiency and quality over traditional automated item 
generation methods (Bezirhan & von Davier, 2023). LLMs can also be 
used to obtain item parameters estimates prior to collecting empirical 
data (Feng et al., 2025; Guenole et al., 2024, 2025). AI technologies 
are helping to define and refine new constructs, like AI literacy, 
computational thinking, and prompt engineering, that are becoming 
increasingly important in digital learning environments (European 
Commission, OECD, & Code.org., 2025). The use of AI enables the 
development of innovative item formats such as interactive simulations, 
scenario-based assessments, and chat-based dialogues (Foster & 
Piacentini, 2023). AI algorithms can be used to map assessment items 
to learning standards or curriculum frameworks, thereby assisting with 
instructional alignment and reducing the burden on subject-matter 
experts (Butterfuss & Doran, 2025). AI supports adaptive testing 
and personalized learning paths that respond to individual learner 
characteristics (Arslan et al., 2024; Sireci et al., 2024; Suárez-Álvarez 

Table 1
Key Definitions of AI-Driven Methods in Educational and Psychological Assessment

Name Description Example
Generative AI (GenAI) A class of AI models that can generate new content, such as text, images, or code, 

based on learned patterns from data.
ChatGPT (OpenAI, 2023)

Machine Learning (ML) A subset of AI that enables systems to learn from data and improve performance on 
tasks without being explicitly programmed.

Neural Networks (von Davier, 2018).

Natural Language Processing 
(NLP)

A field of AI focused on enabling machines to understand, interpret, and respond 
to human language.

Analyzing students’ written responses to assess problem-
solving strategies (Yaneva von & Davier, 2023).

Large Language Model 
(LLM)

A type of NLP model trained on massive text to generate and understand human-
like language.

GPT-4 or Claude 3 Opus (OpenAI, 2023; Anthropic, 2024)
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et al., 2024; Yan et al., 2024). Digital assessments also capture log 
(process) data, providing invaluable insights into test takers’ cognitive 
processes and engagement with tasks (He et al., 2021, 2023; Ulitzsch 
et al., 2023; Suárez-Álvarez et., 2022). Although log (process) data has 
primarily been used to refine estimates of test takers’ proficiencies (Pohl 
et al., 2021; Wise et al., 2021), it can also be employed to identify item 
attributes and predict item performance.

The goal of this paper is to summarize current best practices 
in the applications of Generative AI in modern educational and 
psychological test construction, specifically focusing on item 
generation and item calibration. These applications are emphasized 
because they offer significant benefits in terms of cost efficiency and 
scalability within educational and psychological assessments, and 
they also present potential threats to reliability, validity, and fairness. 
Although these applications have been predominantly utilized by 
large corporations like Duolingo (von Davier et al., 2024), their 
adoption among the wider research and practitioner community 
remains limited. The mission of this paper is to disseminate the 
latest technological advancements to a broader audience, ensuring 
that these innovations benefit a diverse group and contribute to 
the development of a wide range of groundbreaking assessments. 
Finally, a cautionary commentary is included, outlining strategies 
to maximize the benefits of AI-driven methods in test construction 
while minimizing potential risks.

Generative AI in Educational Assessment

Generative AI (GenAI hereafter) has emerged as an innovative 
tool rapidly adopted across various professional fields, efficiently 
managing repetitive and time-consuming tasks. Education assessment 
has been significantly transformed by these advancements, with 
GenAI becoming a contemporary trend in education. AI facilitates 
interactive and authentic assessment formats, including simulations, 
virtual reality (VR) integration, and gamified learning experiences. 
Automated grading and instant feedback reduce teachers’ workloads 
while enabling personalized learning experiences (Mao et al., 2024). 
Educational chatbots, also known as educational conversational 
agents (ECAs), are designed to assist teachers, enhance students’ 
learning processes, and evaluate their performance (Chang et al., 
2023). Some chatbots are student-oriented, serving as personalized 
learning assistants that guide students to answers, evaluate their 
responses, and foster engagement (Kuhail et al., 2023). Others are 
tailored to support teachers by preparing class materials, managing 
course schedules, and tracking deadlines (Ramandanis et al., 2023). 
The applications of GenAI are widely utilized across various 
subjects, adapting to different educational formats and needs. In this 
section we describe emerging methods in educational assessments 
that leverage GenAI for Automated Item Generation (AIG) and 
summarize current best practices for implementing them.

Automated Item Generation (AIG)

Automated item generation (AIG) has long been a subject of 
study in employment and educational assessments (Bejar et al., 
2002). Creating test questions—especially for medical licensing 
and certification—requires significant time and financial resources 
because it depends on expert input for writing scenarios and crafting 
credible answer choices. Technologies like machine learning 

or AI that could help lower these development costs are of great 
interest to test creators. Traditionally, AIG has focused either on 
non-verbal formats like visual matrix puzzles (Embretson, 1999), 
or on techniques resembling fill-in-the-blank exercises similar to 
MadLibs. Since then, GenAI has significantly transformed both 
reading and language assessment.

In Maas’s (2024) recent research, the team applied a fine-tuned 
Conditional Transformer Language (CTRL) model to generate 
English reading comprehension questions for educational purposes, 
with a focus on controllability and alignment to classroom needs. 
The model was trained on the Reading Comprehension dataset from 
Examinations (RACE) and clustered latent traits to allow educators to 
specify desired question types, for example, cloze-style, title-related, 
or general questions. The training helped improve the generation of 
questions tailored to specific reasoning skills. The research found 
that while the fine-tuned model demonstrated promising results in 
generating relevant and contextual reading questions, challenges 
such as overfitting and maintaining consistency in generated outputs 
remain. This required further refinement for practical classroom 
adoption (Maas, 2024). Another study compared human-designed 
and AI-generated English reading comprehension materials, using 
tools like Twee and Kimi to generate multiple-choice questions 
based on middle school materials. This research used mixed methods 
by using both quantitative data and qualitative data to explore the 
human-AI collaboration in comprehension questions generation. 
The results of the study showed that the AI tool was significantly 
more time-efficient, requiring only a fraction of the time needed by 
the human teacher to complete the task, while generating material 
of comparable quality, although the human was superior in terms 
of clarity, relevance, and consistency of the questions with the 
educational objectives. The study also proved that AI tools can 
effectively complement teachers in content creation, enhancing 
efficiency while requiring human guidance to ensure pedagogical 
depth and appropriateness for classroom contexts (Jen et al., 2024). 

In addition to the Generative Pre-trained Transformer (GPT) 
model, widely used for text generation through applications like 
ChatGPT, the BERT model, which underlies Google’s search engine 
capabilities, has also been widely discussed. For example, Kumar’s 
study combined GPT and BERT in a two-stage architecture to 
improve the coherence and contextual accuracy of automated text 
generation. Before training, the team preselected models from 
GPT, Large Scale Decision-Making (LSDM), and Gated Recurrent 
Units (GRU) and finally selected GPT as the text generation model. 
After fine-tuning the model with metrics like Bilingual Evaluation 
Understudy (BLEU) Score and perplexity to gauge the model’s 
performance, the combined model outperformed the single model 
across various tasks like question-answering and summarization. 
The research indicated the potential of combining several models 
for better AI-driven content creation for future diverse applications 
(Kumar et al., 2024). GenAI chatbots were also powerful tools 
for language learning and adaptive questions generation during 
the learning process. Yang et al. (2022) implemented Ellie, a 
task-based AI voice chatbot, to support Korean EFL students in 
practicing English speaking. The chatbot fostered meaningful 
conversations and achieved high task success rates, with students 
positively perceiving it as a fun and effective learning tool despite 
some technical and comprehension challenges. The results highlight 
the potential of AI chatbots to enhance language education while 
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recommending further development to address usability issues and 
expand application scope (Yang et al., 2022). Von Davier (2018) 
used a recurrent neural network (RNN) trained on 3,000 test 
items from the International Personality Item Pool (IPIP) database 
(Goldberg, 1999), which shows the initial framework of modern test 
design with a collaboration between human and AI.

Earlier studies noticed that due to limitations in models and data, 
practical AI-driven AIG was still far off, though the models have 
been well developed with machine learning techniques. However, 
as previously noted, the field advanced rapidly when researchers 
replaced recurrent networks with self-attention-based architectures 
(Vaswani et al., 2017), enabling simpler designs that support parallel 
training and allow models to be pre-trained on broad text data before 
being adapted to specific tasks.

Real-World Example: NAEP Reading Passage Generation

To illustrate how GenAI can support item development, we 
present an example from the U.S. National Assessment of Educational 
Progress (NAEP) focused on the generation of reading passages. 
This process includes ensuring high-quality and consistent training 
data, evaluating multiple AI models for performance and reliability, 
applying standardized validation metrics, and collecting response 
samples to test and refine newly generated items (Figure 1).

Figure 1
Cyclical Framework for Generative AI-Based Test Development

A recent analysis of NAEP reading tasks revealed inconsistencies 
in readability scores across the training data. We curated reading 
passages from NAEP-released items spanning Grades 4 and 8, 
covering the years 1992 to 2020. To maintain consistency in item 
design, we focused exclusively on text-based passages paired with 
multiple-choice questions, deliberately excluding content that 
incorporated tables or figures. This process yielded 24 passages for 
Grade 4 and 23 passages for Grade 8. To assess the difficulty level 
and establish a robust base sample, we applied four widely accepted 

readability indices: Average Reading Level Consensus, Automated 
Readability Index (Smith & Senter, 1967), Flesch-Kincaid Grade 
Level (Kincaid et al., 1975), and SMOG Index (McLaughlin, 1969). 
Contrary to expectations, the results revealed minimal distinction 
between grades—approximately 75% of the passages exhibited 
similar readability scores, making them indistinguishable in terms 
of grade-level appropriateness.

Inconsistencies such as these can introduce substantial variability 
in model performance. Moreover, training on biased or misaligned 
data risks reinforcing and amplifying those biases in model outputs. 
This is especially concerning when employing general-purpose pre-
trained models, where human oversight becomes essential to ensure 
cultural relevance, fairness, and appropriateness.

To address these challenges and construct a clearly defined, 
representative training set, we collaborated closely with item 
developers. Together, we identified and selected six prototypical 
passages for each grade to serve as the foundation for model 
training. Figure S1 (Supplementary Material) shows the results 
from four readability metrics before and after the selection process. 
It apparently shows a smaller variance after the careful selection 
for training data. This more accurate training set significantly 
contributes to the accuracy of AI generation results. It is noted that 
AI generated results kept at the comparable level as the training set 
index results. The Fleisch Kincaid Grade Level index consistently 
showed the lowest value of readability compared with their peers. 

NAEP reading passage generation findings indicate that AI-
generated nonfiction passages demonstrate a significantly higher 
difficulty level than fiction passages. This discrepancy likely 
stems from the inherent variability and creative divergence of 
fiction writing, which contrasts with the more structured nature 
of nonfiction texts. Figure S2 (Supplementary Material) presents 
AI-generated fiction and nonfiction passages for Grade 4. While 
the nonfiction passages exhibit relatively higher readability scores 
across all indices—suggesting a level above Grade 4—the fiction 
passages more closely match the required difficulty range.

To improve the performance of AI in generating fiction content, 
augmenting the input prompts has shown promise. For example, 
including explicit labels such as “fiction” or “nonfiction” during training, 
and emphasizing genre-specific textual features in the prompts, can help 
guide the AI towards producing passages more consistent with training 
expectations. These refinements contribute to marginal improvements 
in readability scores and better alignment with task design.

In this example, we trained AI models using LLMs implemented 
in ChatGPT, Meta AI, and Claude to generate 40 new passages 
for Grade 4 and Grade 8 respectively. The readability of these 
AI-generated passages was reassessed to determine whether they 
matched the target grade levels. To enhance generation quality, we 
employed an iterative approach to prompt engineering. Initially, we 
provided a general description of key differences between Grade 
4 and Grade 8 reading levels, including vocabulary complexity, 
sentence structure, and word count. Our preliminary prompts led 
to AI-generated passages that mimicked these linguistic features 
but did not consistently align with expected readability index score 
ranges. To refine the process, we revised our prompts by explicitly 
quantifying readability standards, detailing the significance of 
readability indices, and explaining how they are calculated. This 
structured approach improved alignment with actual readability 
levels. Among the three AI tools, ChatGPT demonstrated the most 
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effective performance in passage generation, particularly when 
utilizing customized GPT functions. The language in the reading 
passage generated from ChatGPT shows richer descriptions and is 
highly consistent with the grade level indexes. 

As pointed out earlier, we used the consistent evaluation method 
by using the four readability indicators. This evaluation standard is 
unchanged between human and AI generated items. As Figure S2 
(c) shows (Supplementary Material), the language in the reading 
passage generated from ChatGPT shows richer descriptions and is 
highly consistent with the grade level indexes. 

Finally, we invited human item developers to help validate the 
generated items by giving multiple dimensions and calculated the 
consistency. Though there was no real data collected to validate the 
items, the experienced human developers give a relatively objective 
evaluation. In the future study, it is highly recommended to consider 
using simulated data and/or new sample data collection to make a 
further validation on the passages.

Practical Guide for Generative AI-Based Test Development

This section provides a practical guide (Table 2) for developing 
tests using GenAI, aimed at maximizing relevance, validity, and 
fairness throughout the test construction process.

1. Ensure Consistency and Quality in Training Data

Ensuring the quality of the training dataset is essential for 
conveying accurate information during the learning process. All 
materials must undergo rigorous review to confirm the inclusion of 
high-quality items before they are used for AI training (AERA et al., 
2014; Downing & Haladyna, 2006; Lane, Raymond, & Haladyna, 
2016; Muñiz & Fonseca-Pedrero, 2019). This step is vital to support 
critical learning and clear representation of labels in the model.

2. Align AI Use with Intended Uses and Task Type

When using AI for item generation, it is essential to consider 
both the intended use and the nature of the task. AI models tend to 
excel at rule-based or logic-driven tasks, yet they often struggle with 
fiction and emotionally nuanced content. Tasks that require complex 
human emotion or creativity typically demand additional validation 
to ensure quality and appropriateness.

3. Compare Multiple AI Models for Reliability

To ensure consistent and reliable outcomes, it is highly 
recommended to employ at least two AI models and carefully evaluate 
their performance. Comparing outputs, such as those from ChatGPT 
and the Claude model, can help identify discrepancies, assess 
robustness, and improve the overall quality of generated items. 

4. Apply a Standardized Validation Approach

Use a consistent evaluation index to assess both training and AI-
generated outputs. This ensures alignment with baseline standards 
and allows for meaningful performance comparisons. Treat AI-
generated responses as those from a “human” rater to calculate inter-
rater agreement. For example, by verifying whether passages fall 

within the same readability grade level. This guideline aligns with 
and extends general guidance on evidence for test validation (Sireci 
& Benítez, 2023) specifically to AI-based assessments.

5. Verify and Validate AI-Generated Items 

While collecting new human response data to evaluate freshly 
generated items is the most rigorous validation approach, it may not 
always be feasible due to cost and time restriction. In AI contexts, 
“verification” often denotes confirming that AI systems are working 
correctly internally before submitting them for validation scrutiny. 
This involves checking that AI algorithms generate items as 
intended, free from technical errors, bias, or unintended patterns, 
which creates an additional layer addressing the “black box” nature 
of AI compared to traditional assessment development. For example, 
consider using AI-simulated data to calibrate item parameters and 
compare them with the training set (e.g., through Differential Item 
Functioning analysis), or apply NLP techniques to measure semantic 
distance between AI-generated items and the original dataset to 
ensure content alignment and diversity. 

Generative AI in Psychological Assessment

GenAI is increasingly applied in psychological assessment and 
practice, with examples ranging from enhancing diagnostic accuracy 
and therapeutic interventions in clinical psychology (De la Fuente 
& Armayones, 2025) to using ChatGPT as a simulated patient to 
support interactive training and skill development (Sanz et al., 2025). 
Recent advances in Representational AI using embeddings and 
GenAI have led to novel approaches in psychological assessment, 
offering alternatives to traditional self-report methods and enhancing 
item development, and validation. Generative models (decoders) 
help create text, such as test items, while representational models 
(encoders) convert text into numerical formats (embeddings) for 
analysis. This approach offers a promising way to modernize and 
improve measurement in psychology (Wulff & Mata, 2025). These 
embeddings can be used in methods like Pseudo Factor Analysis 
(PFA) to explore psychological constructs and address issues such 
as overlap between scales (Guenole et al., 2025). On the other 
hand, Large Language Models (LLMs) such as GPT-4o and Claude 
3 can be used to predict correlations between personality items 
more accurately than human experts (Schoenegger et al., 2025). 
Another application comes from Fan et al. (2023), who examined 
the psychometric properties of personality scores inferred by AI 
chatbots. These scores, derived from users’ free-text input during 
conversational interactions, showed acceptable reliability and 
convergent validity but limited discriminant and criterion-related 
validity. Yuan et al. (2024) examined how users perceive personality 
scores generated by AI chatbots compared to traditional self-report 
questionnaires. While users found both methods similarly satisfying 
and accurate, they tended to view the survey-based results as more 
trustworthy, likely due to their greater familiarity and simplicity. Sun 
et al. (2024) presented a framework for developing and validating an 
AI chatbot based on the Big Five personality model. They emphasize 
the chatbot’s ability to elicit rich, narrative responses aligned with 
psychological constructs and report improved validity outcomes 
compared to existing tools. In this section we describe emerging 
methods in psychological assessment that leverage LLMs for scale 
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construction. We discuss item generation, how to check semantic 
item alignment, and PFA.

Item Generation, Semantic Item Alignment, and Pseudo 
Factor Analysis (PFA)

When designing a new assessment, conceptual clarification of 
how the construct is similar to and different from related constructs 
is an important step. This can occur qualitatively using subject matter 
experts before data are collected, but LLMs present the possibility 
to approach this task analytically with sentence encoders. A sentence 
encoder is a transformer-based model trained on text to produce 
highly dense numerical representations of sentences in vector 
form. These representations are commonly known as embeddings. 
Association measures such as cosine similarity can be used to 
compare the similarities of embeddings created from construct 
definitions. This allows practitioners to determine the constructs’ 
semantic positions in a nomological network, in turn allowing us to 
move to item generation.

One of the most important requirements is designing effective 
instructions for the AI, known as prompt engineering, to ensure 
the output aligns with your goals while minimizing hallucinations 
and misinterpretations. Prompt engineering with few constraints 
on instructions leads to direct item generation, where we instruct 
the LLM to generate items measuring the focal construct without 
restrictions. We can also use guided item generation methods, where 
we provide detailed instructions about item requirements, such as 
construct definitions, item templates, and other constraints necessary 
such as item polarity (Ferrando et al., 2025). Whether direct or guided 
item generation is used, we can provide or omit example items in the 
LLM prompt. If no item examples are given, the approach is zero-
shot prompting, giving less control over the items that are created. If 
we do give examples, we refer to the method as few-shot prompting, 
which grounds the model in the task context. 

Despite giving instructions regarding item features, generated 
items might not always match our criteria. Quality checks can be 
implemented as constraints during the item generation process itself. 
Alternatively, items might be checked with a prompting approach 
post generation. If the number of items is small (e.g. several hundred 
or fewer) it is feasible to check these manually and ultimately all 
items should be human reviewed. As suggested in the educational 
assessment section, LLMs can also be used to check semantic 
item alignment with construct definitions. To check semantic item 
alignment, encodings are generated between the items and the 
construct definitions, and the cosine similarities are calculated. 
Items should have high similarities with their parent constructs and 
low similarities with non-parent constructs. High and low here do 
not have fixed values, item parent similarities and item non-parent 
similarities need to be interpreted relative to one another. 

With items generated and pre-screened via semantic item 
analysis, the factor structure of the items can be examined before 
responses data are collected with PFA. Similar to traditional factor 
analysis, PFA allows for different degrees of prior expectations 
through the use of target rotation. This flexibility enables both 
fully exploratory analyses, with no prior assumptions, and semi-
confirmatory approaches to examine how items group and cluster. 

At the heart of PFA is the “substitutability assumption”, or the idea 
that the embedding vector for an item statement can stand in for an 
empirical response vector. This involves forming a cosine similarity 
matrix between the item embeddings from the previous step, and 
factor analyzing the matrix in essentially the same way that a 
correlation matrix of real item responses is analyzed.

Real-World Example: Moral Foundations Scale Calibration

As in the previous section, we use a real-world example to 
illustrate how GenAI can support AI-based item calibration. This 
section focuses on the design of a measure targeting executive 
moral foundations (Graham et al., 2009). Moral foundations are 
important for senior executives because they make decisions that 
affect many workers, and these decisions are frequently evaluated 
in moral terms. Moral foundations are conceptually distinct from 
familiar industrial psychology constructs, yet they are infrequently 
included in executive assessment processes. We propose a new 
moral foundations scale using AI. We show that when our proposed 
pipeline is followed (Figure 2), PFA can be an effective data-less 
method for obtaining item pre-knowledge in scale development. 
We also discuss the challenges relevant to PFA including assessing 
model fit without sample sizes using raw residuals. We begin our 
analysis pipeline after we have generated items. More details on the 
item generation process itself are available in Guenole (2025).

Figure 2
Analytical Pipeline for Generative AI-Based Item Calibration

To prepare items for analysis, we first prepared a file of our moral 
foundations’ items (Supplementary Material: factor.csv). We used the 
MiniLM sentence encoder to generate embeddings of these items in 
a Jupyter notebook (matrix_generation.ipynb). The notebook uses 
MiniLM to convert each item into a numerical representation called 
an embedding, which captures the semantic meaning of the item. Each 
embedding has hundreds of numbers (dimensions), and the notebook 
organizes these into columns (one column per dimension). The 
notebook calculates how similar each item embedding row is to every 
other item, creating a similarity matrix, much like how you’d calculate 
correlations between item responses. The output matrix (matrix.csv) 
can then be prepared for factor analysis by setting any diagonals that 
are less than one due to rounding errors to 1, as they are in a correlation 
matrix (matrix.csv). Early theorizing about why this approach works 
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rests on a substitutability assumption (Guenole et al. 2025). This is 
the notion that a numerical item embedding can substitute for an 
empirical item response vector under certain conditions.

Next, a factor analysis can be performed on the similarity matrix 
in R (pfa.R) using any extraction and rotation method. Maximum 
likelihood estimation with oblique rotation, which allows the 
resulting factors to be related to each other, have been shown to 
work well in earlier work. The output includes familiar results 
from traditional factor analysis, such as eigenvalues, a scree plot, 
and a pattern loading matrix showing which items load onto which 
factors. While we present the factor analysis for the final item set, 
we intentionally included about twice as many items as we intended 
to keep. This gave us the flexibility to run several rounds of analysis, 
removing items that didn’t load well on any factor or that cross-
loaded on multiple factors. After each round of removal, we updated 
the matrix and repeated the analysis to refine the item set. The items, 
embedding code, and R code to produce the final factor model are 
included in Supplemental Materials.

Most methods conventionally used to decide on item retention 
in the context of EFA can be used with PFA. In the current example 
we soon discuss, we proposed ensuring that items have their highest 
loading on their parent factor; that this loading is higher than its 
loading on any other factor; that this loading is higher than its 
average loading across all other factors; and that its loading is higher 
than the average of all other item loadings on that factor. From the 
pattern matrix in Table S1 (Supplementary Materials) we see that this 
is the case for most items of the newly developed executive moral 
foundation scale. From the scree plot in Figure S3 (Supplementary 
Materials), we see that six factors are plausible, which in fact was 
the expectation at the outset.

One important point about this approach is that the factor analysis 
is based on the embedding similarities rather than human responses 
and therefore there is no sample size. Sample sizes are required 
for many model-based fit tests and indexes. It is not recommended 
to simply assume an arbitrarily large sample size, because model 
fit statistics are influenced by sample size and the correct sample 
size is required. In this case, we recommend using model free and 
exploratory approaches to checking model fit based on interpreting 
the raw residuals. There are several exploratory approaches that might 
be useful depending on the goal and we describe these here now.

We first plot a heat map of the residual correlations. What we 
hope to see is that most residual correlations are white indicating 
they are near zero. We do not want to see any obvious patterns with 
blocks of blue or red indicating systematically low or high residual 
correlations between the items after conditioning on the latent 
factors. In Figure S4 (Supplementary Materials) we see this is mostly 
the case. We might also plot the distribution of off-diagonal elements 
of the residual correlation matrix, expecting to see relatively small 
residuals with few outliers. Again, this appears mostly the case in 
Figure S5 (Supplementary Materials). Finally, we may choose to 
plot the original versus the residual correlations. Ideally, we would 
see a horizontal band of residuals clustered around zero, which is 
broadly what we see in Figure S5 (Supplementary Materials). We 
also calculated the Root Mean Square Residual (.037) and the 
Common Part Accounted for (CAF, Lorenzo-Seva et al., 2011) (.87) 
which are both indicative of good fit.

Critically, we do not yet present empirical relations with actual 
factor loadings from participant responses, and this is always an 
important step. Earlier work by Guenole et al. (2025) shows that 
pseudo factor loadings are related to empirical loadings, but this is an 
important next step for the executive moral foundations assessment. 
We also note while the pseudo and empirical loadings themselves 
have been shown to be highly correlated. The pseudo factor loadings 
do not yet differentiate reverse keyed items in the way conventional 
items do, because cosine similarities between embeddings tend to 
be positive. Nonetheless, it is still critical to compare pseudo factor 
structures derived from embeddings with empirical factor structures 
based on human responses. Ultimately, the empirical factor structure 
remains the gold standard. Once empirical data are available, 
alignment between models can be assessed using quantitative 
metrics such as Tucker’s congruence coefficient (values > .85 
indicate fair similarity; > .95 indicate strong alignment) and 
correlation coefficients between corresponding factors (Guenole et 
al., 2025). Readers may also wish to explore alternative approaches 
to assessing item dimensionality and discrimination through 
embedding-based network models (Russell-Lasalandra et al., 2024).

Practical Guide for Generative AI-Based Item Calibration

This section provides a practical guide (Table 2) for item 
calibration using GenAI, aimed at maximizing relevance, validity, 
and fairness throughout the test construction process.

6. Use Sentence Encoders to Establish Semantic Construct 
Validity

Before item generation, clarify how the target construct is similar to 
or distinct from related constructs. By comparing the semantic similarity 
of construct definitions within a nomological network, developers can 
validate construct boundaries early in the design process, improving 
alignment and focus on subsequent item development.

7. Apply Prompt Engineering Strategies for LLM-Based Item 
Generation

When generating non-cognitive assessment items with LLMs, 
use prompt engineering strategies that match the desired level of 
control. Guided prompts with examples (few-shot) offer greater 
precision, while minimal prompts without examples (zero-shot) 
allow more creativity but less control. The choice should reflect the 
specificity and psychometric standards required for the assessment.

8. Conduct Semantic Item Alignment to Ensure Construct 
Relevance

To ensure AI-generated items align with the intended construct, 
apply semantic alignment checks either during or after item generation. 
This can involve manual review or LLM-based methods, such as 
calculating cosine similarity between item and construct embeddings. 
Items should show relatively higher similarity to their target construct 
than to unrelated ones, guiding item selection and refinement.
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9. Use Embedding-Based Factor Analysis with Iterative 
Refinement for Item Selection

To evaluate AI-generated items, convert item text into 
embeddings using an LLM and analyze the resulting similarity 
matrix with factor analysis. Begin with a large item pool to allow for 
iterative refinement, removing items with weak or cross-loadings. 
Assign items to factors using systematic criteria based on loading 
strength and distinctiveness. Ensure the process is transparent and 
reproducible using shared data and code.

10. Use Model-Free Exploratory Techniques to Evaluate Fit in 
Embedding-Based Factor Analysis

When factor analyzing item embeddings without response data, 
traditional fit indices can’t be used due to the lack of a sample size. 
Instead, apply model-free exploratory methods such as heatmaps 
of residual correlations, distributions of off-diagonal residuals, and 
plots comparing original to residual correlations to assess whether 
the latent structure fits the data well.

Table 2
Practical Guide to Generative AI–Based Test Development and Calibration

Generative AI-Based 
Application Guidelines

Test Development

1. Ensure Consistency and Quality in 
Training Data
2. Align AI Use with Intended Uses and Task 
Type
3. Compare Multiple AI Models for 
Reliability 
4. Apply a Standardized Validation Approach
5. Verify and Validate AI-Generated Items

Item Calibration

6. Use Sentence Encoders to Establish 
Semantic Construct Validity
7. Apply Prompt Engineering Strategies for 
LLM-Based Item Generation
8. Conduct Semantic Item Alignment to 
Ensure Construct Relevance
9. Use Embedding-Based Factor Analysis 
with Iterative Refinement for Item Selection
10. Use Model-Free Exploratory Techniques 
to Evaluate Fit in Embedding-Based Factor 
Analysis

Maximizing Benefits While Reducing Risks

As public trust and engagement in standardized testing declines 
(Borgonovi & Suárez-Álvarez, 2025; Suárez-Álvarez et al., 2024), 
AI-driven methods, such ML, NLP, and LLM (see Table 1 for 
definitions), are being increasingly applied to optimize traditional 
measurement approaches (Hao et al, 2024; Yaneva & von Davier, 
2023). While these innovations offer important gains in efficiency, 
cost, and scalability, there is a risk that, without also addressing 
broader concerns of trust, equity, and relevance, educational and 
psychological measurement may become increasingly disconnected 
from evolving scientific standards, societal needs, and ethical 
principles (Burstein et al., 2025; Johnson et al., 2025; Walker et 
al., 2023). Therefore, to fully harness the benefits of technological 
innovations like AI in promoting individual and societal progress, it 

is essential to understand their limitations (Bulut et al., 2024; Dixon-
Roman, 2024; Dumas, Greiff, & Wetzel, 2025; Hao et al., 2024; Ho, 
2024; Yan, Greiff et al., 2024; Swiecki et al., 2022). 

The following section summarizes current limitations of AI-based 
methods for test construction, organized into four key areas: validity 
(explainability), reliability (consistency, and generalizability), 
fairness (training data quality), and data security and privacy. Each 
issue is linked to specific guidelines to support implementation. 
However, given the conceptual and practical overlap among these 
issues and the guidelines to address them, some level of interaction 
between them is to be expected.

Validity and the “Black Box” Problem

One of the most pressing validity concerns is the lack of 
transparency in how large AI models make predictions, a challenge 
often referred to as the black box problem. Unlike theory-driven 
methods grounded in Karl Popper’s falsifiability principle, where 
a scientific theory must be testable and subject to empirical 
disconfirmation, data-driven AI models do not typically allow 
for such scrutiny. While these models can serve valuable roles in 
educational and psychological measurement, the absence of a clear 
theoretical foundation increases the risk of speculative or spurious 
conclusions. Rather than discarding theory when confronted with 
data inconsistencies, we argue for refining theoretical frameworks 
using advanced methodologies. Empirical inquiry should be guided, 
and at minimum verified, by theory, not divorced from it.

Furthermore, Explainable Artificial Intelligence (XAI) aims to 
make AI models more transparent and interpretable, addressing 
concerns related to model opacity and validity (Samek et al., 
2017). By providing clear and understandable explanations of 
how decisions are made, XAI helps build trust and facilitates 
validation, particularly in high-stakes domains. This approach has 
shown promising results in healthcare, improving both clinician 
understanding and patient outcomes (Doshi-Velez & Kim, 2017; 
Holzinger et al., 2019). Given these successes, there is growing 
interest in applying XAI techniques to the educational (Khosravi et 
al., 2022) and psychological fields (Joyce et al., 2023) to enhance 
the interpretability and acceptance of AI-driven assessment tools. 
Our current efforts focus on adapting XAI methods to support 
transparent and valid test development processes.

Guideline 4 directly addresses the validity concern by establishing 
systematic methods for evaluating whether AI-generated outputs 
align with intended constructs. It helps make the AI’s decision-
making process more interpretable and transparent, reducing the 
“black box” nature of the model. Guideline 5 supports construct 
validity by ensuring that the generated items are actually measuring 
what they are intended to measure. Through expert review, semantic 
alignment, or empirical validation, this step helps mitigate the opacity 
of the model’s outputs. Guideline 6 helps clarify how constructs 
are defined and differentiated prior to item generation, enhancing 
conceptual transparency. Guideline 8 ensures that generated items 
align with the intended construct, providing a data-driven check on 
construct representation. Finally, Guideline 9 offers a framework 
for analyzing the dimensionality of AI-generated items, thereby 
supporting construct validity through empirical evidence.
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Reliability and the “Hallucination” Problem

Another major threat is (un)reliability. AI models can produce 
errors, respond inconsistently to identical prompts, and struggle 
with abstract reasoning, logical inference, or unfamiliar content, 
issues commonly referred to as hallucinations. Although Guidelines 
2 and 3 are intended to mitigate these risks by encouraging task-
model alignment and multi-model comparisons, consistent human 
verification remains essential (see also Guidelines 4 and 5).

Guideline 7 recommends using prompt engineering strategies 
that align with the intended purpose to structure, and guide 
prompts effectively. This approach reduces variability, increases 
the consistency of AI-generated items, and is also expected to 
enhance validity. Guideline 9 advises applying embedding-based 
factor analysis iteratively to identify and remove items with weak or 
inconsistent loadings, thereby enhancing item stability and internal 
consistency. Finally, Guideline 10 encourages the use of model-free 
exploratory techniques to empirically assess internal consistency 
and dimensional coherence. These methods help identify unreliable 
or poorly fitting items and support improvements to both internal 
consistency and the underlying structure of the scale.

Fairness and the “Alignment Gap”

Fairness is compromised when pre-trained models, such as 
those behind ChatGPT, are used without scrutiny of the cultural 
responsiveness of their training data. This alignment gap reflects 
a disconnect between model training and intended test use. When 
sufficient task-specific data are available, Guideline 1 recommends 
training models directly on curated, high-quality content. However, 
when relying on general-purpose pre-trained models, extreme 
caution is warranted. Human oversight and review are essential to 
ensure cultural relevance and appropriateness (see Guidelines 4 
and 5). Our approach maintains a clear boundary between AI-based 
assessments and the ultimate decision-making responsibilities of 
psychologists and educators, reinforcing that AI serves as an aid 
rather than a substitute.

Guideline 6 also aims to ensure that constructs are clearly 
defined and culturally grounded, helping to reduce the risk of biased 
construct representation. Guideline 8 recommends systematically 
evaluating whether items accurately reflect the target construct 
across diverse populations. Additionally, Guideline 7 supports 
greater control over content generation by incorporating constraints 
that promote inclusivity and cultural responsiveness.

Data Security and Privacy

Although not directly related to validity, reliability, and fairness, 
data privacy and security are crucial ethical considerations. 
Consumer-facing tools like ChatGPT may use submitted prompts 
and generated responses to further train their models. This poses risks 
when test content or sensitive data are entered into such platforms. 
Also, the legal and ethical aspects of content ownership generated 
by AI warrant future discussion to inform policy and practice.

This issue is addressed through strong data governance practices 
that ensure sensitive information used in AI-assisted test construction 
is protected throughout the development process. This includes 
establishing clear protocols for data access, ensuring compliance 

with privacy regulations, avoiding the use of open-access consumer 
AI tools that may reuse input data (such as ChatGPT’s free version), 
and using secure environments for storing and processing both 
training data and AI-generated content. Effective governance also 
involves transparency in how data are handled and ensuring that 
personal or confidential educational data are not inadvertently 
exposed or misused.

Concluding Remarks

GenAI holds great promise for transforming assessments by 
enabling faster, more adaptive, and scalable test development. 
Techniques like embedding-based item evaluation can streamline 
early test design and reduce costs, helping bridge the gap between 
semantic AI models and traditional psychometric practices 
(Guenole et al., 2025; Russell-Lasalandra et al., 2024). However, 
these innovations must be implemented with caution. Risks such 
as academic misconduct, technical vulnerabilities, and disciplinary 
skepticism highlight the need for thoughtful integration (Alasadi 
et al., 2023; Dolenc et al., 2024; Farrelly et al., 2023; Wang et al., 
2023). Crucially, the effectiveness of AI-based tools depends on their 
alignment with core psychometric principles. Without clear evidence 
of reliability, validity, and fairness, even the most advanced systems 
remain superficial. Moving forward, assessment professionals must 
balance innovation with rigorous empirical standards and ethical 
safeguards to ensure responsible use of GenAI.
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