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INDIVIDUAL DIFFERENCES SCALING
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Latent trait models (LTMs) are one type of individual differences scaling models. Most
commonly, these models use parametric functions to model the option response functions
(ORFs) and latent trait distributions, although recently several nonparametric LTMs have also
been proposed. In this paper, the strengths of each of these two approaches are discussed by
comparing two models: Muthén’s parametric LISCOMP model, and Levine’s nonparametric
MFS model. It was found that the MFS model is particularly suited for unidimensional scaling
since it allows density estimation, it is more flexible at modeling the shape of the ORFs, and
therefore may be more robust to mispecifications of the dimensionality of the data. The
LISCOMP model, on the other hand, is particularly suited for multidimensional scaling, and
for modeling the relationships between the scaling dimensions and external variables.
Nonparametric models such as MES are not easily generalized to multidimensional situations
since they usually rely on smoothing constraints to reduce the estimation parameter space.
These constraints are based on assumptions about the functional form of the ORFs and the
latent trait densities, and it may be difficult to arrive at a set of constraints that will prove
appropriate for different sampling schemes and dimensionality hypotheses.

Key words: IRT; item response theory.

Enfoques paramétricos versus no paramétricos para el escalamiento de diferencias
individuales. Los modelos de rasgos latentes (MRLs) son un tipo de modelos de escalamiento
de diferencias individuales. Habitualmente, estos modelos utilizan funciones paramétricas para
modelar las funciones de respuesta a las opciones (FROs) y las distribuciones de los rasgos
latentes, aunque recientemente varios MRLs no paramétricos han sido propuestos. En este
articulo se comparan las ventajas de cada uno de estos dos enfoques mediante la comparacién
de dos modelos: el modelo paramétrico LISCOMP de Muthén, y el modelo no paramétrico
MFS de Levine. El modelo MFS es particularmente apropiado en escalamiento unidimensional
dado que permite estimar la densidad del rasgo latente, es m-s flexible para modelar las FROs,
y como resultado puede ser m-s robusto a misespecificaciones de la dimensionalidad de los
datos. El modelo LISCOMP, por su parte, es particularmente apropiado en escalamiento
multidimensional, asf como para modelar las relaciones entre las dimensiones del escalamiento
y variables externas. Los modelos no paramétricos como MFS no son generalizables fécilmente
a situaciones multidimensionales ya que habitualmente utilizan restricciones que suavizan la
forma de las funciones utilizadas. Estas restricciones se basan en supuestos acerca de las formas
de las FROs y de las densidades de los rasgos latentes. Sin embargo, puede ser dificil el llegar
a establecer un conjunto de restricciones comiin para diferentes disefios muestrales y para
diferentes soluciones dimensionales.

Palabras clave: TRI; teoria de respuesta a los items.

One of the main objectives of Psychology  perceptions of stimuli. Different sampling
as a Science is to study how we represent our ~ designs can be used in this endeavor:
paired comparisons, sorting tasks, etc. For
simplicity, this article focuses on one of the
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scaled are statements reflecting values or
attitudes, or containing behavioral or
cognitive descriptions, each subject is
presented every stimulus one at a time. A
forced choice categorical response format
(dichotomous or polychotomous) is
commonly presented to the subjects when
this type of stimuli are used. In a
dichotomous response format the subject
might be asked, for instance: (a)
to endorse or reject a statement that
reflects his/her attitudes, or (2) to check a
psychological symptom as present or absent.
In a polychotomous response format the
subject might be asked, for instance: (a) to
endorse an attitudinal statement in a rating
scale ranging from strongly disagree to
strongly agree, or (b) to rate the occurrence
of a behavior from very infrequent to very
frequent. In this context, scaling can be
defined as the mapping of all respondents
and stimuli in a continuum, based on the
subjects’ categorical responses.

One approach to scaling consists of
assuming that all subjects perceive the
stimuli in the same way. When this
assumption is adequate, we can readily rank
order our stimuli along a continuum using
appropriate models (e.g., Thurstone, 1927,
Coombs, 1950; Bradley & Terry, 1952;
Luce, 1959). Alternatively, we may assume
that within a homogeneous set of stimuli
there are no inter-stimuli differences, and
that the observed variability in how subjects
respond to stimuli is solely due to systematic
individual differences. When this assumption
is adequate, the subjects can be rank ordered
along a continuum. An example of this
approach is given by Likert (1932).

However, it seems more reasonable to
believe that the observed variability in the
subjects’ responses is due to systematic
individual differences and to inter-stimuli
differences. In that case, it is necessary to
find a way to separate the within-individual
variability from the between-individual
variability. One way to account for the
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dependencies among observations due to the
between-subject variation is to use a statistical
model that includes subject parameters along
with stimuli parameters. These parameters
can then be estimated by asymptotically
optimal estimation methods such as
maximum likelihood or generalized least
squares. Unfortunately, because the subject
parameters increase as sample size increases,
the desirable asymptotic properties of these
estimators do not hold (Neyman & Scott,
1948). One way of solving this problem is to
introduce the subject parameters as a random
effect, while keeping the stimuli parameters
as a fixed effect.

Generally speaking, the probability of
observing a vector of categorical responses
U =u can be expressed as
(1) Prob(v=u) =[Prob(v=ul6=t) £(t) d(t)
where f(t) is the probability density function
of the subject parameters and Prob
(v=ul8=t)is the probability of observing a
response vector v=u in a group of subjects
with a fixed value,8=t, in the continuum of
subject parameters.

This paper focuses in a subset of the
individual differences scaling models,
namely, in those models where the Prob
(v=ulB=t) can be represented as
(2) Prob(v=ulf=t) = IT Prob(v,=u,6=t)
where 0 is a g dimensional vector of subject
parameters. These models are generally called
latent trait models, and, the random
variables 0 (theta) are called latent traits.
These models have been most commonly
used to scale direct response data, although
they may also well be used to scale data
obtained through other sampling designs (see
Takane, 1989).

Note that of the three terms appearing in
Equation 1, {Prob (v=u), Prob (v=ulf=t),
and f(t)}, generally only one, Prob (v=u),
may be estimated directly and that Prob
(v=ulB6=t) and f(t) can not be estimated
simultaneously (see Bartholomew, 1987). In
any case, it is possible to:
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(1) Estimate the function Prob(v=ul0=t)
if £(t) is known (or assumed to be known);

(2) Estimate the density f(t) if the function
Prob (v=ul6=t) is known (or assumed to be
known); or

(3) Estimate Prob (v=ul8=t) and £(t)
alternatively. For instance, a) assigning an
initial value to f(t) to estimate Prob
(v=ulB=t), b) re-estimating f(t) using the
Prob (v=ul0=t) estimated previously, and
so on until the algorithm converges.

Most latent trait models specify an a
priori parametric form for Prob (v=ul6=t),
usually a cumulative normal or logistic
function, and a parametric function for f(t),
usually a normal density. Recently, however,
several non parametric latent trait models
have been proposed (Ramsey, 1988; Ramsey
& Winsberg, 1991; Samejima, 1983, 1988;
Levine, 1984; Levine, Drasgow, Williams,
Maydeu-Olivares, Mead, Thomasson, Tsien,
Wei, & Zickar, 1993). In this paper these
two approaches will be compared. With this
aim, I will describe with some detail (1) a
parametric model of individual differences
scaling, proposed by Muthén (1983, 1984,
1987), and (2) a non parametric model of
individual differences scaling, proposed by
Levine (1984, 1989; Levine et al., 1993;
Williams & Levine, 1993). To illustrate the
exposition, an application of these two
approaches to a set of actual data will be
presented.

PARAMETRIC VS. NON PARAMETRIC
LATENT TRAIT MODELS

In his pioneering work on scaling,
Thurstone was already concerned with the
sampling theory foundations of his model.
In fact, Thurstone (1927) introduced two
explanations for the nature of the stochasticity
of what he referred to as ‘discriminal
processes’ of the subjects. These are the Case
I and Case II of his Law of Comparative
Judgment. Interestingly enough, Thurstone’s
Case I and Case II closely match the
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stochastic subject rationale and the random
sampling rationale for latent trait models
described by Holland (1990).

Indeed, Holland (1990) has argued that
when the data is collected using a direct
response sampling design and fitted by a
latent trait model, the basis for statistical
inference lies in what he refers to as a random
sampling rationale. According to this
rationale, the meaningfulness of statistical
inference in latent trait models is granted by
assuming that: 1) the stimuli are fixed in the
sense of not being sampled, and 2) the
subjects are a random sample from a
population. Furthermore, Holland (1990:
p. 584) states «I believe that no completely
satisfactory justification of the stochastic
subject is possible».

If, following Holland (1990), we accept
that statistical inference in latent trait models
only requires these two assumptions, then
any function can be used to represent Prob
(v=ulB=t) and f(t) provided that Equation
2 is satisfied. That is, the density f(t) is only
determined up to a choice of the function
Prob (v=ulB=t), and vice versa.

The random sampling rationale also has
implications for estimation. If the categorical
responses to be scaled are obtained from a
random sample of subjects from a much
larger population, then the maximum
likelihood estimator of the log-likelihood of
the data is exactly the so called ‘marginal’
maximum estimator (MMLE) applied by
Bock and Aitkin (1981) to parametric models
and by Levine (1989) to nonparametric
models (see Holland, 1990: p. 593).

LISCOMP: A parametric model of individual
differences scaling by covariance structure
analysis

Takane and de Leeuw (1987) and Takane
(1989) have shown that many scaling models
(e.g. Thurstone, 1927, 1959; Takane, 1980;
Heiser & de Leeuw, 1981; De Soete &
Carroll, 1983; De Soete, Carroll, & DeSarbo,
1986) can be considered as special cases of
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analysis of covariance structures (ACOVS:
Joreskog, 1970). In particular, Takane and
de Leeuw (1987) have shown that most
parametric latent trait models for direct
response data (e.g. Samejima, 1969; Bock,
1972; Muthén, 1984) are special cases of
covariance structures analysis, or more
generally, of moment structures analysis,
and therefore suitable to be estimated using
existing covariance structures software such
as LISCOMP (Muthén, 1987) or LISREL 7
(Joreskog & Sorbom, 1989).

Muthén (1983, 1984, 1987) has described
a covariance structures model given by

3) y=v+AB+¢
4 6=a+BO+C

where 0 is a vector of individual differences
parameters (latent traits); A and B are
matrices of structural and measurement
regression coefficients, respectively; € and ¢
are vectors of structural and measurement
residuals, respectively; and o and v are
vectors of structural and measurement
intercepts, respectively. Categorical ratings,
u,=1,2, ..k .., m obtained by a direct
response design can be incorporated into the
model by assuming that the y variables in
Equation 3 have been categorized by

u, =0 if y <n+,l
=1 if y = 1,2

®)

u,=m if y, = t,m-1

If, in addition, it is assumed that the y and
0 variables follow a multinormal distribution
we have (6)

Prob(u=kl0=t)=F(t,, . +M0)-F(t,, +Al6)

where the T variables are thresholds, and
F(e) is a normal cumulative function.
Muthén’s (1983, 1984) model is formally
equivalent (in the unidimensional case)
to Samejima’s (1969) graded model (see
Takane & de Leeuw, 1987), and is directly
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related to Thurstonian scaling models (see
Thurstone, 1959).

Muthén (1984, 1987) has proposed a
three-stage limited information estimator of
this model that uses only first and second
moments of the data. The resulting weighted
least squares loss function is asymptotically
distributed as chi-square with n(n+1)/2-p
degrees of freedom, where p is the number
of stimuli parameters in the model, and # is
the number of stimuli to be analyzed. This
weighted least squares estimator must be
regarded as an approximation to the MMLE
estimator described by Bock and Aitkin
(1981).

MEFS: A non parametric model of individual
differences scaling

There are several non-parametric models
of individual differences scaling (see Levine
et al., 1993). In this paper, we will describe
only one of them, Levine’s Multilinear
Formula Score model (MFS: Levine, 1984,
1989; Levine ef al., 1993). The theoretical
base of MFS lies on the finiteness of the
span of the posterior densities of the subject
parameters (see Levine, 1984, 1992). Since
there are finitely many posterior densities,
their linear span forms a finite dimensional
vector space. The function corresponding
to any single Prob(ui=kl|8=t) is then
represented as a linear combination of a set
of basis functions for that span, that is

(M P@u=kio=0= a,,, h(0

where A, (1), j =1, ..., J is an orthogonal basis
function for the span of the posterior densities
of the subject parameters, and q,,, is its
corresponding coefficient estimated from the
data. Thus, the sample likelihood of Prob
(u,=kl0=t) is evaluated as a function for the
unknown coefficients a,;,. The orthogonal
basis h; (t) are obtained by a procedure
analogous to principal components performed
on the span of the posterior densities of the
subject parameters (Levine, 1989).
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Levine ef al. (1993) have pointed out that
the fundamental feature that distinguishes
non parametric from parametric models is
that parametric models use only one function
to fit the whole continuum of subject
parameters (the latent trait), whereas non
parametric models use an strategy to divide
that continuum into small regions, and then
use different functions to model each one of
these subdivisions.

It is also noteworthy to point out that the
LISCOMP model uses the first of the
estimation strategies for latent trait models
described previously. That is, the f(t) and
Prob (u,=k|0=t) in this model are estimated
by assuming that f(t) is a multivariate normal
distribution, and that Prob(u,=klf8=t)is a
normal cumulative function.

The MFS model uses the third of such
estimation strategies: Initial values of
Prob(u,=k10=t) are used to estimate by
marginal maximum likelihood f(t). Then, a
set of orthonormal bases for f(t) is obtained,
h; (1), and the coefficients a,,, in Equation 7
are estimated also by marginal maximum
likelihood, completing an estimation cycle.
Finally, to improve efficiency of the
estimation, constraints are introduced over
specified regions of h based on assumptions
about the shapes of the functions Prob
(u,=k10=t). These constraints reduce the
parameter space by imposing linear
inequalities that the vector of coefficients
a,,, must satisfy. Three types of constraints
are generally imposed: monotonicity
constraints, concavity constraints, and
smoothing constraints. Further details can be
found in Levine (1984, 1989, 1992).

Any function Prob(u,;=k16=t) may be
used as starting values of the estimation
process. For instance, a regression of each of
the stimuli on some sort of total score of the
stimuli can be used as starting values for
MFS. These so-called item-score regressions
are obtained using Sympson’s (1988)
POLYSCORE procedure. In this paper we
used the functions Prob(u=kl8=t)

Psicothema, 1994

estimated by LISCOMP as starting values
for the program FORSCORE (Williams &
Levine, 1993) to show how MFS is able to
depart from a good starting value.

An example

The five statements that compose the Posi-
tive Problem Orientation (PPO) of the Social
Problem Solving Inventory ~Revised (SPSI-
R: D’Zurilla & Maydeu-Olivares, 1993) we-
re scaled using Muthén’s (1984) parametric
model, and Levine’s (1984) non parametric
model using the responses of 1053 subjects.
Each of the subjects was asked to rate on a
five point scale from ‘very true of me’ to
‘not at all true of me’ the accuracy of each
of those five statements in relation to their
overall daily behavior and cognitions in real
life problem solving. These statements inclu-
de behaviors that reflect a positive problem
appraisal, commitment to a problem-solving
coping strategy, problem solving self-efficacy
self-expectancies, and positive outcome
expectancies when facing real-life problems.

Muthén’s (1984) version of Thurstonian
scaling was fitted by weighted least squares
using LISCOMP (Muthén, 1987). This model
did not fit the data very well as assessed by
the chi-square goodness-of-fit index y’ (5) =
25.07, p < .001. However, the robustness of
this test statistic to violations of the model
assumptions when the response variables are
categorical have not been extensively
studied. Other goodness of fit indices reveal
a reasonable good fit of this model: root
mean square residual (RMSR)=.034, Tanaka
and Huba’s (1985) goodness of fit index
(GFI)=.994, McDonald’s (1988) mk=.991.

The non parametric model MFS was
fitted to these data using the FORSCORE
(Williams & Levine, 1993) computer
program with 20 estimation cycles. We used
as starting values the functions Prob
(u,=k16=t) estimated by LISCOMP instead
of the POLYSCORE curves to show how
MES is able to depart from a good parametric
starting value.
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The marginal maximum likelihood
estimation method used by this program
leads to a discrepancy function that is
asymptotically distributed as chi-square with
(m™-p) degrees of freedom, where m is the
number of response options to each of the
stimuli, » is the number of stimuli, and pis
the number of stimuli parameters. This
discrepancy function is based on the ratio of
the likelihood under the fitted model to the
likelihood of a saturated model in which we
fit the multinomial distribution to the
empirical frequencies (see McDonald &
Mok, 1993). This statistic can hardly ever be
used in practice, since often there are not
enough data to estimate the empirical
frequencies of all possible mn response
patterns. In our example, there are 5°=3125
possible response patterns, whereas only 1053
subject responses are available. Therefore, we
are clearly unable to estimate the empirical
frequencies of all possible response patterns.

Drasgow, Levine, Tsien, Williams, and
Mead (in press) have suggested assessing the
goodness of fit of these models by inspecting
all first order, second order, and third order
chi-square statistics of the m” table, instead
of inspecting the overall m” table, because

the empirical frequencies of these lower
order statistics can be readily be estimated.
A chi-square statistic for a single stimulus
is obtained by
@®

options

g (observed proportion, - expected proportion,)’

where the expected proportions are obtained
from

®
expected proportion, (k)=N[Prob(u=k|6=t) f(t)dt

The chi-square statistics for a pair of
stimuli (i,j) are obtained as in Equation 8,
but the sum is over pairs of options (k, k’)
and the expected proportions are obtained by

10
expected proportion; ;
(k,k")=NfProb(u,=kl0=t)Prob(u,=k|6=t) f(t)dt

The chi-square statistics for a triplet of
stimuli are obtained by the obvious extension
of the above procedure (for more details see
Drasgow et al., in press).

Since in practice sometimes some of the
options are not chosen by any subject in
the sample, these chi-square statistics may
have different degrees of freedom. For this

Table 1
Frequencies, means, and standard deviations of chi-square to degress of freedom ratios
FREQUENCY DISTRIBUTION
OF CHI-SQUARE TO D.F. RATIOS
Model Stimuli <1 1-2 2-3 >3 Mean Std.
LISCOMP singles 5 0 0 0 .00515 .00135
pairs 0 5 3 2 2.12659 2.12659
triplets 0 10 0 0 1.49396 17415
MFS singles 5 0 0 0 10756 .10683
pairs 10 0 0 0 48549 .17988
triplets 10 0 0 0 59419 13224

NOTES: The number of stimuli is 5, the number of subjects is 1053. The number of possible pairs and
triplets with 5 stimuli is 10. The stimuli are the items of the Positive Problem Orientation (PPO; D’Zurilla

& Maydeu-Olivares, 1993).

LISCOMP = Muthén’s parametric model, MFS = Levine’s non parametric model.
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reason, Drasgow et al. (in press) recommend
inspecting the ratio chi-square to degrees
of freedom to assess the goodness of fit of
the model. In Table 1 I present the results
obtained by fitting the LISCOMP and MFS
models to the data of this example. As it
can be observed in this table, all chi-square
to degrees of freedom ratios for the MFS
model are less than one, whereas only the
chi-square/d.f. ratios for single stimuli are
less than one in the LISCOMP model.
Furthermore, the mean of the ratios obtained
from single stimuli for the LISCOMP model
(X =.00515) is less than the one obtained
for the MFS model (8 = .10756). Thus,
LISCOMP fits the first order marginals of
these data better than MFS, but MFS
provides a better overall fit to the data.

That LISCOMP fits better than MFS the
first order marginals can also be observed
graphically by plotting the estimated
functions Prob (u;=k|8=t). In Figures 1 to
4 1 present plots of these functions for the
worse fitted stimulus (Figures 1 and 2) and
better fitted stimulus (Figures 3 and 4). The
vertical lines drawn in these figures
correspond to 95% confidence intervals
computed around 25 points in the 6 scale
(further details on the construction of these
plots can be found in Drasgow et al., in
press).

Those points where vertical lines have not
been drawn indicate that less than five
subjects chose that particular option, and
therefore, confidence intervals around that
point were not computed. In Figures 2 and 4
(corresponding to the MFS model), the
estimated density has been transformed to
a standard normal density so as to be able
to compare these figures with those
corresponding to the LISCOMP model.

The inspection of these figures reveals
that both models fit these data satisfactorily.
Note, however, that even after transforming
its density, the MFS curves do not resemble
the smoother LISCOMP curves. Levine et
al. (1993) have performed several
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simulation studies that indicate that the
somehow strange forms of the Prob
(u;=k18=1) functions estimated by MFS are
not due to sampling variations, but are due to
the existence of multidimensionality or non-
normal densities in the data. It is precisely
the higher flexibility of MFS to capture
small degrees of multidimensionality and to
model non normal densities which allows
this model to fit the data of this example
better than the LISCOMP model. In Figure
5, I present a plot of the density of the latent
trait as estimated by MFS. As it can be
observed in this figure, the estimated density
is slightly bimodal and most subjects in
this sample lie between —1<08<1. The
elevations of the density at the extremes of
the graph (0=121) are due to the lack of
subjects in the extremes of the distribution,
and can be removed by imposing stricter
smoothing constrains in the tails of the
distribution.

CONCLUSIONS

A large set of scaling models hypothesize
that the variability with which subjects
perceive, discriminate, and choose among
stimuli is due to both inter-individual varia-
bility and within-individual variability.
These models, referred to as individual
differences scaling models, generally use
subject as well as stimuli parameters. A
subset of the individual differences scaling
models are the so-called latent trait models.
An examination of the basis for statistical
inference of latent trait models reveals that
there is no need to postulate any particular
functional form for the probability of discri-
minating or choosing a particular object
given a fixed level of the continuum being
measured. Thus, the use of nonparametric or
semi-parametric latent trait models is fully
justifiable. Indeed, in applications (as in the
example presented in this paper) non-para-
metric latent trait models can offer a better fit
than parametric latent trait models because.
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Figure 1: Graphical representation of the goodness
0 of fit of the LISCOMP model to item 2 of the
-3 Positive Problem Orientation Scale.
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Figure 5: Estimated density of the Positive
Problem Orientation latent trait plotted against a
standard normal density

a) they may be more robust than parame-

tric models to mispecifications of the di-

mensionality of the data,

b) they are more flexible to model the
probability of discriminating or choosing an
stimulus,

c) they allow us to estimate a non
parametric density of the subject parameters.

A major drawback of these models is that
they rely on smoothing constraints to reduce
the parameter space of estimation. These
constraints are based on assumptions about
the functional form of the probability of
discriminating or choosing an stimulus given
a fixed level of the scaling continuum.
However, if these type of models are to be
used in multidimensional situations, or with
different sampling designs, then it will be
necessary to modify the set of smoothing
constraints, and it may be difficult to arrive
at a set of constraints that will prove
appropriate for each of these situations.

Under these conditions, parametric models
of individual differences scaling, and more
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specifically, covariance structures models
are superior to non parametric models. In
particular, covariance structure models are
clearly suited when it is of interest to model
the relationships between a set of stimuli and
some external variables.
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