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An examination of the robustness of the modified Brown-For sythe and
the Welch-James testsin the multivariate Split-Plot designs

Guillermo Vallgjo and J. Ramon Escudero
University of Oviedo

The aim of this paper is to evaluate the robustness of the Welch-James multivariate solution given by
Johansen (1980), and the improved multivariate Brown-Forsythe (1974) procedure when covariance
matrices are heterogeneous. The results indicate that when design is unbalanced and the data are mul-
tivariate normally distributed, both approaches show a good control of error rates for the within-sub-
jects main effect. When normality and homogeneity assumptions arejointly violated, none of the pro-
cedures was able to control the error rates in al of the investigated conditions. With regard to the test
of the interaction effect, our results indicate that the modified Brown-Forsythe procedure can ef fecti-
vely control the rate of Type | errors when dispersion matrices are heterogeneous, and also when the
data are sampled from a skewed distribution. This finding held even when the degree of heterogeneity
of the covariance matrices was varied across the design. The Welch-James test is not a adequate solu-
tion, since the sample sizes required to achieve robustness could be unreasonably large, particularly
when the multivariate normality assumption isviolated.

Un examen de la robustez de las pruebas Wel ch-James y Brown-For sythe modificada en disefios mul -
tivariados split-plot. Mediante el presente trabajo se pretende evaluar la robustez de la solucion multi-
variada Welch-James dada por Johansen (1980) y la version mejorada del enfoque multivariado de
Brown y Forsythe (1974) cuando las matrices de dispersion son heterogéneas. Los resultados indican
que cuando el disefio es desequilibrado y los datos son extraidos desde una distribucién normal ambos
enfoques controlan adecuadamente |as tasas de error asociadas con el efecto principal de las ocasiones
de medida. Sin embargo, cuando se incumplen los supuestos de normalidad y homogeneidad, ningin
procedimiento es capaz de proporcionar un control estricto de las tasas de error. Por |o que respectaa
la interaccién, los resultados ponen de relieve que el procedimiento modificado de Brown-Forsythe
gjerce un control muy satisfactorio de las tasas de error cuando |os datos se obtienen desde distribu-
ciones sesgadas. Este resultado también se mantiene cuando se € grado de heterogeneidad de las ma-
trices de covarianza se variaalo largo del disefio. Bajo esta condicién el procedimiento de Welch-Ja-
mes no constituye una solucién adecuada, dado que los tamafios de muestra requeridos para lograr la

robustez pueden |legar a ser exagerados, sobre manera, cuando los datos carecen de normalidad.

The univariate repeated measures design containing a single
between-subjects (groups) factor A with j=1,...,p levels and n; ob-
servations at each j and a single within-subjects (occasions) factor
B with k=1,...,q levels is very frequent in almost al scientific
fields (Shoukri & Pause, 1999). Although the nature of these de-
signs is typically multivariate, the effects of design (occasions
main effect and groups x occasions interaction) can be tested by
using univariate or multivariate approach. The validity of these
procedures rests on the nature of the assumptions that the resear-
cher is willing to make about the data. When the assumptions of
multivariate normality, homogeneity of the covariance matrices,
and multisample sphericity are satisfied, such designs are analyzed

Correspondencia: Guillermo Vallgo
Facultad de Psicologia

Universidad de Oviedo

33003 Oviedo (Spain)

E-mail: gvallgjo@sci.cpd.uniovi.es

by Scheffé's (1956) univariate mixed model. When the multisam-
ple sphericity assumption is not satisfied either an adjusted degre-
es of freedom univariate test or multivariate model perspective
may be used. Under a multivariate model, no restrictions are pla-
ced on the structure of the covariance matrix. However, the num-
ber of experimental observations must be greater or equal to the of
repeated measurements and, as the univariate model, the assump-
tions of dispersion matrix equality and normality must be satisfied.

If sphericity assumption is met, the conventiona univariate
procedure is more powerful than the multivariate approach (Da-
vidson, 1972). However, if sphericity appears untenable no clear-
cut rule emerged for choosing between the adjusted degrees of fre-
edom univariate tests and their multivariate counterparts (Mendo-
za, Toothaker, & Nicewander, 1974). When covariance matrices
are unequal and the design is balanced (equal group sizes), Kesel-
man and Keselman (1990) have shown that both procedures are
generally robust to the violation of dispersion matrix equality. In
this case, the choice between univariate or multi variate technique
depends, especially, on differences in their statistical power. Ho-
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wever, none of these approaches can provide robust tests of wit-
hin-subjects main and interaction effects when matrices are hete-
rogeneous and group sizes are unequal. In thislast situation, Algi-
na and Oshima (1995) suggested using the General Approxima-
tion or Improved General Approximation test due to Huynh
(1978), Keselman, Carriere, and Lix (1993) suggested using the
multivariate Welch-James (WJ) statistic given by Johansen (1980),
whereas Jones (1993) defends the mixed model approach. That is,
rather than presuming a certain type of structure, as is the case
with the univariate or a multivariate test statistic, the advocates the
mixed model approach modeling the covariance structure directly.
Yet, recently, Keselman, Algina, Kowalchuk and Wolfinger (1999)
have found that this new approach, as implemented in SAS (Rele-
ase 6.11 of PROC MIXED, SAS Ingtitute, 1996), has some pro-
blemsin identifying the correct structure, and, istimes, it is prone
to depressed or inflated Type| error rates. For thisreason they sug-
gest apply the approach cautiously, proposing as alternative solu-
tion the multivariate WJ statistic.

In a multivariate repeated measures experiment, each subject
givesar-dimensional response on each of g occasions. In this ca-
sg, if ther variables are statistically related or if the Type | error
rate isto be controlled experimentwise, either amultivariate mixed
model (MMM; the Scheffé' s mixed model generalized for appli-
cation to multivariate case) or doubly multivariate model (DMM)
perspective may be used. Both analyses require (a) that the popu-
lations sampled have a multivariate normal distribution, and (b)
that the dispersion matrices are the same for the populations sam-
pled. Otherwise, the MMM analysis rests upon a further assump-
tion, namely multivariate sphericity (M-sphericity). Simulation
studies have shown that the unadjusted MMM test cannot be re-
commended except when M-sphericity is known to hold. One si-
tuation in which the adjusted MMM test is more powerful than the
DMM test is when sample size is very small. If sample sizeisre-
asonably large, there appears to be little or no advantage in using
adjusted MMM tests. When the sample contains adequate infor-
mation to estimate the covariance matrix without requiring any
particular structural form, the DMM test must be preferred since
amost a ways provide greater statistical power (Boik, 1991; Va
llgjo & Menéndez, 1997; Vallgo, Fidalgo, & Fernandez, 1998).

Vallgjo, Fernandez, Fidalgo, and Escudero (1999) evaluated the
power and robustness for the DMM test and the e-corrected MMM
test suggested by Boik (1991) in the presence of heteroscedasticity
of the variance-covariance matrices and when data were non-nor-
mal in form under null and non-null hypothesis. Their results re-
vealed that these tests were extremely sensitive to departures from
covariance homogeneity when the design was unbalanced (une-
qual group sizes) and the sample size was small. When the design
was balanced, both adjusted MMM and MDM approaches exhibi-
ted a superior control of eror rates. Data distribution had small ef-
fects on the Type | error rates and power for both procedures: the
DMM test was dightly liberal when the model was additive and
conservative when the model was non-additive; its effect for co-
rrected MMM tests was insignificant. These results are consistent
with the empirical literature (Keselman & Keselman, 1990; Kesel-
man & Lix, 1997; Mendoza et al. 1974; Olson, 1974; Rogan, Ke-
selman, & Mendoza, 1980).

Subsequently, Vallgjo, Fidalgo and Ferndndez (in press) evaua-
ted the robustness of the doubly multivariate model, Welch-James
multivariate solution and the multivariate version of the modified
Brown-Forsythe (BF, 1974) procedure proposed by Rubin (1983)

and Mehrotra (1997), within the context of one-way analysis of va-
riance. The performance of these procedures was investigated by
testing within-blocks sources of variation in unbalanced multiva-
riate split-plot designs containing unequa covariance matrices. Our
findings indicate that the doubly multivariate model did not provi-
de effective Type | error control, while the Wel ch-James procedure
provided robust and powerful tests of the within-subjects main ef-
fect; however, this approach provided liberal tests of the interaction
effect. The results also indicate that the modified Brown-Forsythe
procedure provided robust tests of within-subjects main and inte-
raction effects, especially when the design was balanced, or when
group sizes and covariance matrices were positively paired.

Vallgjo et al. (in press) did not consider the effects of multiva-
riate non-normality on the operating characteristics of the exami-
ned procedures. Thus, additional research is necessary to determi-
neif the findings obtained by Vallejo et al. (in press) can be gene-
ralized beyond the limited conditions they investigated. In particu-
lar, it is very important to examine the robustness of modified BF
procedure when the degree of heterogeneity of the covariance ma-
trices is varied across the designs and the data are not normally
distributed. Accordingly, the main purpose of this study is to com-
parethe Typel error rates of the WJ and modified BF statistics for
testing within-subjects main and interaction effects in multivariate
repeated measures designs, in the presence of heteroscedasticity
variance-covariance matrices and multivariate non-normality. A
second purpose of this study isto determine if the BF test offersa
greater control of Type| eror rates for the interaction than the WJ
when the sample sizes are sufficiently large.

Definition of Test Statistics

The linear model for multivariate repeated measures can be
written as

Y=XB + U, @)

whereY isthe N x gr response matrix, B isthep x gr matrix of pa-
rameters, X isthe N x p design matrix of full rank, and U isthe N
x gr matrix of random errors. If €, denotes a vector of random
errors associated with theith subject, it is assumed that € ~ N(O, 3 )
where 3; isthe gr x gr matrix of dispersion corresponding to the
jthlevel of the between-subjects factor. Jointly,

vec(U) ~ N[O, (Iy ® 3))] @
where the symbol & represents the direct or Kronecker product of
two matrices. The fact that 3 ; depends upon i means that the co-
variance matrices for the r epeated measures vary across groups.

Multivariate Brown-Forsythe (BF) test

The general linear hypothesis for the BF procedure can be writ-
ten as

Hy: C'BA =0 @3)

where C’ isa Vv, x p matrix of rank n;,, B was defined before, and
A isaq x u matrix of rank u. Coefficients for between-subjects
contrasts are contained in C and coefficients for within-subjects
contrasts for the r dependent variables are contained in A.
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The BF statistics for testing the hypothesis concerning to the
within-subjects interaction, assuming (2), can be expressed in
terms of the matricesH and E*. These matrices take the following
form,

H=(C'BA)'[C' (X&)% C'BA) @
and
. G0
E =pendcA 5 A
BZHHC' ! ®)
whereC' =[lp; i -1 and A =1, ® F, withF =[lg4 : -1] and

G = (1- ny| N). Thisform of E* matrix ensures that the expected

values of H and the expected value of éleA 2j A areequal if the

null hypothesis is true, since mean vectors are being compared
across groups.
Using resultsin Nel and van der Merwe (1986), the distribution

of matrix ingA 2j A can be approximated as a sum of Wisharts
distribution

a C Cc U
A3 A) ~ Foov G 2
Jgl(CJA I A)~SW E/l ..... Vi, V*lA 2iA ., V*pA ZpAE

(6)
with degrees of freedom
Op p
V. = terl(chszB a Z
e~ 1 2
Sl A [tr(pAzJA)]} o

The symbol tr denotes the trace of a matrix.
This hypothesis was tested using the F-test approximation to
Wilk's L given by Rao (1951) as

/\ZIJS* *
NG
/\ Bj_B @

wheres” = [(M? (2 - 4) / (m? + {2 - 5] V2, M= o = { (e -
(M-pp+1) /2] s"- (Myy -2) /2}, uh Wy b/ (p-1), and A= = [E7| 1]
E* + H|, with m equal to the dimension of E* and H and uh equal
to

. Atr(MPBY
MTIIVI=" ©

where M=R(R’GR)* R’ and P=diag [(n,/N)1}4,..., (n/N)1 3 ],
with R=C'®(1,®F"), G={[N-1(X'X)]"1®A}, A=diag (14, Os,...,

Ogp), and (.)* isthe Moore-Penroseinverse of (). Thishypothesiswas
rejected at nomina o levd if F> F(1 -a): i, 1 where F(l -); Wi uz' is
the 100 (1-a) th percentile of the F-distribution with pi and 15 de-
grees of freedom.

The above result was established assuming that the quadratic
form H can be approximated as weighted sum of Wisharts distri-
bution

where each Wishart distribution in the sum has one degree of fre-
edomandAq, A,,..., A, are distinct nonzero eigervalues of M P (or

PM). Taking H = ng)\ jW;j (v, P)Khatri (1980) find that

E(H)=N 1, (12)
and
V(H)=2\2 1 - (12

Equating the first two moments of the distribution of H
[E(H)=tr(MP) and V(H)=tr(MP)?] to those of a central Wishart
matrix and solving simultaneously the equations (11) and (12) we
obtained the equation (9).

The statistics used to test the within-subjects main effect hypot-
hesis dso can be expressed in terms of the matrices H and E whe-
re

H=(C'BA)'[C"' (X'®)Y(C'BA), (13)
and
~_0 U; O “1prs
s

In equation (13), C’ isal x p vector of ones, A is as previously
defined, and B= (h/n)ﬂ2'B where the symbols i and i designates
the arithmetic mean and the harmonic mean of n's, respectively.
Extending the results r eported by Nel and van der Merwe (1986),

the distribution of matrix élnjflA 2 jA can be approximated as a
sum of Wisharts distribution

E -1 D. .. 1 1 , O
jzlnj A ZJANSV\Ar E’l,...,vp,nA21A,...,TA szE

171 pp (15)

with degrees of freedom

trgz(r}lA 5 A B @r z(nlA zJAg

v, =

: %{tr(rﬁA 3 A +[tr (T 55 A)] }
I (16)

This hypothesis was tested using the F-test approximation to

Wilk'sL given by Rao as
/\]Js
L
: 17)
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where s= [((m213 - 4)/(m2 + p2 - 5)]Y2, W= my,, and Hw, =
{1 - (M- py + 1)/ 2]~ (mity - 2) /2.

The Welch-James (WJ) test

The multivariate WJ statistic for testing repeated measures
main and interaction ef fect hypotheses developed by Keselman et
al. (1993) according to Johansen (1980), can be used when the co-
variance homogeneity assumption is not satisfied. The approxima-
te degrees of freedom multivariate WJ type statistic is

Tws= (RY)' (RPR)1 (Ry), (18)

wherey isapgr x 1 vector with elements obtained by stacking the
mean of y;, R=C" ® (I, ® F’) isa contrast matrix whose order
depends on the hypothesis tested, and P is a block diagonal matrix
of dimension pgr x pgr with the sample covariance matrices
weighted by n'% in the main diagonal. This test statistic, divided
by a constant, ¢, can be approximate by an F distribution with py
(rank of theR contrast matrix) and b= (14 + 2) /(3A). The cons-
tant c= py +2A - 6A /(q +2), with

:%%B{PR RPR)RQJ} +{tr(PR (RPRT])RQJ} / (-1, as)

where Q isablock diagona matrix of dimension pgr x par, with the
jth block equal to a gr x gr identity matrix and zeroes elsawhere.

Vellg o and Escudero (1998) showed that for testing Hy : Ry =0,
the form of the R matrix depends on the tested effect. For the in-
teraction, R=C’ ® (I, ® F') where C’ isa (p- 1) x p coefficient
matrix that determines the elements of B include in the null hy-
pothesis, Fisaqx(q- 1) coefficient matrix for testing hypothesis
about the repeated measures varieble, and I isanr x r identity ma-
trix. Whereas for the within-subjects main effect (additive model
and unweighted means),R = ¢ ® (I, ® F') wherec’ isal x p vec-
tor of ones, Fisaqg x(q - 1) contrast matrix, and | ,isan r xr iden-
tity matrix.

For both effectsthe Hg : RpL = 0, isrejected using a significan-
celevel of o if Tyy/ ¢> Fpqy. by where Fy_q. T isthe 100
(1-0) th percentile of the F-distribution with py and s degrees of
freedom.

Method

A Monte Carlo simulation study was undertaken to evaluate the
robustness of the BF and WJ statistics for testing within-subjects
main and interaction effects. The design investigated herein had
one between-subjects factor (p = 3), one within-subjects factor (q
= 4), and three dependent variables (r = 3). Five variables were
manipulated. These were: (a) total sample size (N), (b) nature of
the pairing of unequal covariance matrices and group sizes, (c) ty-
pes of population covariance structures, (€) degree of heteroge-
neity of the covariance matrices, and (e) types of distributions.

Based on the previous research findings, the first variable, N,
was selected such that the ratio of N/ r (g-1) was ranged from 8 to
16. Thus, for r (g-1) = 9, N = 72, 108, and 144. Though, unfortu-
nately, the last value is not very frequent in the educational and
psychological researches according to the survey conducted by
Kowalchuk, Lix, and Keselman (1996), for comparison purposes
we have adopted.

The second variable manipulated in the current investigation
was pairing condition. Null, positive and negative pairing of group
sizes and covariance matrices were investigated. A null pairing re-
fersto the case in which matrices are heterogeneous but the design
is balanced, that is, the size of the element values at the covarian-
ce matrices were not related with the group sizes because all
groups had an equal size. A positive pairing referred to the case in
which the largest n; was associated with the covariance matrix
containing the largest element values, a negative pairing referred
to the case in which the largest n; was associated with the covar
riance matrix containing the smallest element values. For positive
anegative pairings, a moderate and substantial degree of group si-
ze inequality was investigated. The moder ately unbalanced group
sizes had a coefficient of sample size variation (A) equal to .20,
while the more disparate cases A = .40, where

=

and N is the average group size. When the design is balanced A =
0, whereas when the design is unbalanced this coefficient increase
in value as group sizes become more disparate. Finaly, the ratio of
the smallest group size (e.g., Nyip) to 1 (q—1) were set at 1.33 for
N =72, 2for N = 108, and 2.67 for N = 144.

The third variable investigated was the pattern of covariance
matrices. In this study, the forms of the dispersion matrices were
2= (¥, ® V]-) and 2= ¥, ® Wj), where W, representsthe r xr
correlation matrix for the dependent variables, and V; and W; des-
cribes the covariance among the repeated measures associated
with a particular dependent variable. In the first condition the ma-
trix V; had compound symmetry (CS), whereas in the second con-
dition the matrix W; had seria correlation (AR). Though the BF
and WJ procedures are multivariate statistics and therefore should
not be dependent of the pattern of covariance matrices, Vallgjo et
al. (1999) found that the rate of Type | error for the DMM test do-
es vary with the form of ¥ . In particular, if the covariance matrix
has a Kronecker structure.

The fourth variable included in this study was the degree of he-
terogeneity of the covariance matrices. Two levels of dispersion
matrix inequality were varied: (31 =1/3Y, and Y 3=5/3%,) and
(31= 155, and y3= 955 ).

Thelast variable investigated was the type of distribution. Ty-
pe |l error rates were obtained when the data were both normal and
non-normal in form. With respect to the former condition, the da-
tawere generated as follows:

1. For each level of the between-subjects factor, generate vec-
tors of pseudo-random normal variates. The GAUSS generator
RNDN (GAUSS Aptech Systems, 1997) was used to obtain all
vectors of normal variates.

2. The corresponding multi variate observations were obtained
by the method of Schauer and Stoller (1966), that is, y';; = Lz;; +
H;j, where L isaCholesky factor of 3; and z; isavector of normal
variates obtained from the Kinderman and Ramage (1976) algo-
rithm.

The non-normal data for the current sudy were sampled from a
chi-sguared distribution with three degrees of freedom as follows:

1. For each level of the between-subjects factor, to obtain each
wij,, avector of variates having a2 distribution with three degre-
es of freedom, three vectors of pseudorandom normal variates we-

(20)
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re squared and summed. The GAUSS generator RNDN (GAUSS
Aptech Systems, 1997) was used to generate all variates.

2. The X2 variates generated in the precedent step were standardi-
zed to have a mean zero and variance one using the populaion ex-
pected va ue and standard deviation. See Hasting and Peacock (1975)
for further details on the generation of data from this distribution.

3. The corresponding multivariate observations were obtained
using the same procedure as was used for the normal distribution.

This particular type of 23 distribution with y; (skewness)=1.63
and vy, (kurtosis)=4 was selected for three reasons. First, Micceri
(1989) investigated many data sets from educational and psycho-
logical research and found striking departures from normality. Se-
cond, this population represent relatively extreme but realistic
skew-leptokurtic distribution (see, Micceri, 1989, Wilcox, 1989).
Third, this population has been used in a number of previous stu-
dies designed to investigate of the robustness of the WJ procedure
(p.e., Keselman et al., 1993; Algina and Keselman, 1997).

The simulation program was written in the GAUSS program-
ming language. All factors were completely crossed with one
another: three sample sizes (72, 108, and 144), five patterns of pai-
rings (one null, two positive, and two negative), two types of co-
variance structures, two levels of dispersion matrix inequality, and
two types of distributions. For each of the3x5x2x2x2=120
cells of the design the number of replications was 10,000. Using
Wilk's (1932) lambda, the BF and WJ statistics for testing hypot-
hesis concerning main and interaction effects were performed
using the 0.05 and 0.01 nominal significance level. A summary of
conditionsincluded in the study is presented in Tablel.

Results

Estimated Type | error rat&s((x\) arereported in Table 2, in Ta
ble 3, in Table 4, and Table 5. On these tables, a outside the inter-
val /2 < G < 3/2a arein bold. According to this criterion, in or-
der for atest to be considered robust, its empiri Eal rate of Typel
error must be contained in the interval (.025 < o < .075) for the

5% level of significance, and in the interval (.005 < d < .015) for
the 1% level of significance. Correspondingly, a test was conside-
red to be non-robust if, for a particular condition, its Type | error
was not contained in these intervals. Although to evaluate the ade-
quacy of robustness in control of Type | errors, several standards
have been used, Keselman and Lix (1997) used this criterion and
thus for comparison purposes we have adopted it as well. Nonet-
heless, it should be noted that with other standards different inter-
pretations of the results are possible.

Type | Error Rates for Tests of the Occasions Main Effect

Normally Distributed Data.Table 2 contains the empirical rates
of Type error for the main effect of the BF and WJ tests for each
manipulated condition.

As seen from table 2, the WJ statistic was able to control the
Type | error rates across al of the investigated conditions, even
when the sample sizes are small. Similar results were obtained
with the BF procedure, except for negative pairing condition,
when N = 72 and A = .40. In this case, the procedure was aways
conservative. The other two manipulated conditions, that is, cova
riance ratios and pattern of covariance matrices had little effect on
the results associated with both procedures.

Nonnormally Distributed Data. Table 3 contains the empirical
rates of Type | error for the main effect when data were sampled
from a chi-squared distribution with three degrees of freedom.

As seen from table 3, when the data are obtained from a ske-
wed distribution increases Type | error rates for the BF and WJ
tests, in particular, for a = .01. For the BF test 4 conditions resul -
tedin Typel error rates below .005, and 16 rates above .015. Whe-
reas, for the WJ test 23 conditions resulted in Type | error rates
above .005, and 8 rates above .075.

In this case, contrary to what happened when data were sam-
pled from a multivariate normal distribution, covariance ratios and
pattern of covariance matrices had a superior effect on the robust-
ness of both procedures; especially, the degree of heterogeneity of
the covariance matrices.

Table1
Summary of experimental conditions
Normal Data Nonnormal Data
13: 1:5/3 1/3: 1:5/3 1/5: 1:.9/5 1/5: 1:.9/5
N ny, ny, ng Pairing A Cs AR Cs AR Cs AR Cs AR
072 24 24 24 = 0.0 X X X X X X X X
18 24 30 + 0.2 X X X X X X X X
30 24 18 - 0.2 X X X X X X X X
12 24 36 + 04 X X X X X X X X
36 24 12 - 0.4 X X X X X X X X
108 36 36 36 = 0.0 X X X X X X X X
27 36 45 + 0.2 X X X X X X X X
45 36 27 - 0.2 X X X X X X X X
18 36 54 + 04 X X X X X X X X
54 36 18 - 04 X X X X X X X X
144 48 48 48 = 0.0 X X X X X X X X
36 48 60 + 0.2 X X X X X X X X
60 48 36 - 0.2 X X X X X X X X
24 48 72 + 04 X X X X X X X X
72 48 24 - 04 X X X X X X X X
Note. CS = Compound symmetric; AR = First-order autoregressive; A = Coefficient of sample size variation; = stands for null pairing of unequal covariance matrices but equal group sizes; +
stands for positive pairing of unequal covariance matrices and unequal group sizes; — stands for negative pairing of unequal covariance matrices and unequal group sizes.
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Typel Error Rates for Tests of the Groups x Occasions Inte -
raction Effect

Normally Distributed Data.Table 4 gives the empirica Type |
error rates obtained in the simulation for the interaction effect
when data were sampled from a multivariate normal distribution.

An inspection of the results in Table 4 indicates that, the BF
stati stic was able to control the Type | error rates across al of the
investigated conditions, except for negative pairing condition,
when N = 72, and A = .40. In this case, the same as it happened
for the main effect tests and normally distributed data; the pro-
cedure had atendency to have Type | error rates below the lower
limit of Bradley’s (1978) libera criterion interval. However, the
results in Table 4 show that the WJ procedure did not provide a
robust test of the within-subjects interaction effect, given that ex-
hibits poor control of the Type | error rates for many of the in-
vestigated conditions. A careful examination of the Table 4 reve-
als that, when there was an inverse relationship between sample
sizes and dispersion matrices and A = .40, the WJ procedure was
always liberal and error rates were, in some cases, may become

severely inflated. In fact, in Table 4, it is readily seen that while
BF statistic was able to control the Type | error rates in 110 of
the 120 investigated conditions the WJ test had aliberal behavior
in more than half of the examined conditions. Consistent with the
findings of other researches, including Keselman and Lix (1997),
the degree of liberalness of the WJ test decreasing as the sample
Sizes increases.

Nonnormally Distributed Data. Table 5 contains the empiri-
cal rates of Type | error for the interaction effect when data we-
re sampled from a chi-squared distribution with three degrees of
freedom.

As seen from the table 5, when the multivariate normality as-
sumption was violated, the pattern of results associated with the
BF statistic was very similar to the one observed when the norma-
lity assumption was satisfied. For this procedure, the impact of
non-normality on Type | error ratesis modest. With respect to the
WJ procedure, error rates associated with the skewed distribution
were almost always larger than those obtained for the normal dis-
tribution; in particular, for a = .01. For positive pairings, Type |
error rates associated with the skewed distribution were not always

Table2
Empirical Type | error rates for the within-subjects main ef fect and multivariate normal distribution

Covariance Ratio

13:1:5/3 15: 1. 95
Wm BFm Wm
N Struct. ny ny ng A a=.05 a=.01 a=.05 0=.01 a=.05 a=.01 a=.05 a=.01
072 Cs 24 24 24 0.0 0.0503 0.0094 0.0546 0.0103 0.0454 0.0090 0.0500 0.0100
072 Cs 18 24 30 0.2 0.0464 0.0095 0.0490 0.0097 0.0468 0.0080 0.0486 0.0082
072 Cs 30 24 18 0.2 0.0416 0.0060 0.0543 0.0088 0.0410 0.0074 0.0558 0.0107
072 Cs 12 24 36 0.4 0.0515 0.0113 0.0541 0.0114 0.0515 0.0110 0.0534 0.0111
072 Cs 36 24 12 04 0.0151 0.0020 0.0539 0.0071 0.0223 0.0125 0.0642 0.0078
072 AR 24 24 24 0.0 0.0481 0.0107 0.0530 0.0109 0.0479 0.0097 0.0546 0.0103
072 AR 18 24 30 02 0.0461 0.0087 0.0473 0.0089 0.0471 0.0108 0.0491 0.0108
072 AR 30 24 18 02 0.0418 0.0090 0.0514 0.0115 0.0411 0.0070 0.0543 0.0105
072 AR 12 24 36 04 0.0480 0.0084 0.0498 0.0085 0.0477 0.0090 0.0494 0.0092
072 AR 36 24 12 04 0.0186 0.0011 0.0588 0.0083 0.0215 0.0200 0.0610 0.0091
108 Cs 36 36 36 0.0 0.0503 0.0090 0.0508 0.0086 0.0510 0.0094 0.0628 0.0099
108 Cs 27 36 45 0.2 0.0510 0.0104 0.0509 0.0098 0.0505 0.0116 0.0597 0.0121
108 Cs 45 36 27 0.2 0.0453 0.0074 0.0487 0.0076 0.0456 0.0081 0.0727 0.0117
108 Cs 18 36 54 04 0.0464 0.0078 0.0465 0.0075 0.0488 0.0104 0.0555 0.0106
108 Cs 54 36 18 04 0.0358 0.0058 0.0490 0.0069 0.0372 0.0054 0.0561 0.0105
108 AR 36 36 36 0.0 0.0464 0.0103 0.0471 0.0100 0.0450 0.0092 0.0553 0.0099
108 AR 27 36 45 02 0.0510 0.0107 0.0509 0.0104 0.0514 0.0109 0.0599 0.0105
108 AR 45 36 27 02 0.0458 0.0093 0.0494 0.0098 0.0454 0.0077 0.0711 0.0114
108 AR 18 36 54 04 0.0491 0.0113 0.0490 0.0108 0.0506 0.0115 0.0585 0.0119
108 AR 54 36 18 04 0.0339 0.0052 0.0498 0.0092 0.0394 0.0064 0.0564 0.0113
144 Cs 48 48 48 0.0 0.0482 0.0107 0.0481 0.0103 0.0463 0.0089 0.0462 0.0086
144 Ccs 36 48 60 0.2 0.0513 0.0104 0.0504 0.0099 0.0481 0.0095 0.0476 0.0086
144 Cs 60 48 36 02 0.0466 0.0089 0.0471 0.0087 0.0472 0.0091 0.0489 0.0089
144 CS 24 48 72 0.4 0.0539 0.0107 0.0532 0.0098 0.0485 0.0099 0.0477 0.0091
144 Cs 72 48 24 04 0.0443 0.0068 0.0522 0.0087 0.0431 0.0059 0.0528 0.0082
144 AR 48 48 48 0.0 0.0461 0.0081 0.0460 0.0079 0.0470 0.0103 0.0475 0.0098
144 AR 36 48 60 02 0.0500 0.0093 0.0482 0.0085 0.0495 0.0097 0.0492 0.0092
144 AR 60 48 36 0.2 0.0459 0.0100 0.0464 0.0095 0.0488 0.0085 0.0505 0.0087
144 AR 24 48 72 0.4 0.0479 0.0103 0.0474 0.0101 0.0500 0.0087 0.0490 0.0081
144 AR 72 48 24 0.4 0.0406 0.0080 0.0491 0.0092 0.0413 0.0053 0.0494 0.0075

Bold values are not contained in the interval 1/2a<4<3/2a.

Note. BFm = Brown-Forsythe main effect test; W\ = Welch-James main ef fect test; CS = Compound symmetric; AR = First-order autoregressive; A = Coefficient of sample size variation;
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larger than those obtained for the normal distribution. However,
for balanced designs and negative pairings, error rates associated
with the skewed distribution were always larger than those obtai-
ned for the normal distribution. In fact, for the BF test 8 conditions
resulted in Type | error rates below the lower limit of Bradley's
(1978) libera criterion interval. Whereas, for the WJ test 85 con-
ditionsresulted in Type| error rates above upper limit of Bradley’s
liberal criterion.

Aswas true for the main effect and skewed data, covariance ra-
tios and pattern of covariance matrices had a superior effect on the
robustness of both procedures; especialy, the degree of heteroge-
neity of the covariance matrices.

Finaly, Table 6 gives a summary of the number of empirica
Type | error rates above or below of interval a/2 < 0 < 3/2a. Each
below and above cell corresponds to 10 conditions because the
count is aggregated over the 2 alpha levels and 5 pairing condi-
tions.

An inspection of the results in Table 6 indicates that, the BF
statistic was able to control the Type | error ratesin 432 of the 480
investigated conditions. In fact, for the BF test 28 conditions re-

707

sulted in Type | error rates below the lower limit of Bradley’s li-
beral criterion and 20 above upper limit of Bradley’slibera crite-
rion. Whereas, for the WJ test 177 conditions resulted in Type |
error rates above upper limit of Bradley’sliberal criterion.

Discussion and conclusions

The purpose of this investigation was to compare the perfor-
mance of the modified BF approach presented by Vallgjoet al. (in
press) with the performance of Johansen’s (1980) solution, when
testing within-subjects main and interaction effects in unbalanced
multivariate split-plot designs. Specifically, we examined the ro-
bustness of these procedures when the homogeneity of the cova
riance matrices is not satisfied and data were obtained from the
non-normal chi-squared distribution.

The results indicate that when covariance homogeneity as-
sumption was violated, but the normality assumption is satisfied,
both the BF and WJ test show a good control of Typel error rates
across all of the investigated conditions for the within-subjects
main effect. Although, for negative pairings and severe values of

Table3
Empirical Type | error rates for the within-subjects main effect and multivariate nonnormal distribution
Covariance Ratio
1/3:1: 53 15: 1: 9/5
BFwm Wm BFm Wm
N Struct. ny ny n3 A a=.05 a=.01 a=.05 a=.01 0=.05 a=.01 0=.05 a=.01
072 CS 24 24 24 0.0 0.0608 0.0122 0.0611 0.0126 0.0668 0.0170 0.0729 0.0190
072 Cs 18 24 30 0.2 0.0590 0.0123 0.0612 0.0125 0.0629 0.0146 0.0654 0.0151
072 CS 30 24 18 0.2 0.0486 0.0101 0.0615 0.0133 0.0556 0.0113 0.0757 0.0168
072 cs 12 24 36 04 0.0610 0.0138 0.0628 0.0135 0.0662 0.0159 0.0682 0.0157
072 CS 36 24 12 04 0.0236 0.0027 0.0756 0.0137 0.0269 0.0036 0.0827 0.0159
072 AR 24 24 24 0.0 0.0548 0.0128 0.0604 0.0133 0.0682 0.0195 0.0754 0.0175
072 AR 18 24 30 0.2 0.0597 0.0151 0.0620 0.0154 0.0705 0.0174 0.0737 0.0178
072 AR 30 24 18 0.2 0.0520 0.0112 0.0670 0.0142 0.0605 0.0159 0.0770 0.0201
072 AR 12 24 36 04 0.0607 0.0164 0.0676 0.0165 0.0672 0.0189 0.0692 0.0190
072 AR 36 24 12 04 0.0248 0.0032 0.0763 0.0126 0.0271 0.0440 0.0859 0.0176
108 CS 36 36 36 0.0 0.0569 0.0125 0.0579 0.0126 0.0597 0.0132 0.0603 0.0128
108 CsS 27 36 45 0.2 0.0580 0.0126 0.0579 0.0124 0.0604 0.0124 0.0605 0.0119
108 CS 45 36 27 0.2 0.0512 0.0112 0.0550 0.0117 0.0607 0.0145 0.0718 0.0172
108 Cs 18 36 54 04 0.0545 0.0115 0.0544 0.0146 0.0621 0.0148 0.0622 0.0150
108 CS 54 36 18 04 0.0400 0.0077 0.0570 0.0130 0.0443 0.0084 0.0650 0.0145
108 AR 36 36 36 0.0 0.0547 0.0121 0.0553 0.0116 0.0636 0.0170 0.0654 0.0166
108 AR 27 36 45 0.2 0.0513 0.0117 0.0511 0.0108 0.0670 0.0194 0.0667 0.0191
108 AR 45 36 27 0.2 0.0565 0.0143 0.0604 0.0151 0.0691 0.0176 0.0813 0.0205
108 AR 18 36 54 04 0.0568 0.0141 0.0604 0.0135 0.0644 0.0179 0.0642 0.0171
108 AR 54 36 18 04 0.0465 0.0078 0.0663 0.0128 0.0486 0.0091 0.0717 0.0167
144 cs 48 48 48 0.0 0.0543 0.0132 0.0541 0.0127 0.0562 0.0126 0.0561 0.0119
144 Cs 36 48 60 0.2 0.0624 0.0146 0.0604 0.0141 0.0619 0.0149 0.0614 0.0143
144 Cs 60 48 36 0.2 0.0619 0.0142 0.0631 0.0143 0.0602 0.0161 0.0623 0.0159
144 cs 24 48 72 0.4 0.0626 0.0152 0.0618 0.0146 0.0624 0.0131 0.0613 0.0123
144 Cs 72 48 24 0.4 0.0548 0.0115 0.0632 0.0135 0.0601 0.0128 0.0746 0.0161
144 AR 48 48 48 0.0 0.0555 0.0124 0.0553 0.0116 0.0620 0.0139 0.0619 0.0139
144 AR 36 48 60 0.2 0.0663 0.0148 0.0643 0.0143 0.0639 0.0153 0.0633 0.0148
144 AR 60 48 36 0.2 0.0601 0.0139 0.0611 0.0137 0.0615 0.0154 0.0627 0.0153
144 AR 24 48 72 04 0.0593 0.0128 0.0588 0.0125 0.0608 0.0147 0.0602 0.0142
144 AR 72 48 24 04 0.0581 0.0117 0.0670 0.0142 0.0611 0.0128 0.0749 0.0161
Note. BFpM = Brown-Forsythe main ef fect test; WJym = Welch-James main effect test; CS = Compound symmetric; AR = First-order autoregressive; A = Coefficient of sample size variation;
Bold values are not contained in the interval 1/2a<d<3/2a.
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coefficient of sample size variation, the WJ test seems preferable
as atest of the within-subjects main effect, because it is never too
conservative neither excessively liberal test.

When normality and homogeneity assumptions are jointly vio-
lated, the WJ test does not perform as well with those sample si-
zes that can be considered the norm, rather than the exception in
the psychological and educational researches (see Kowalchuk et
al, 1997). In this case, at least for the conditions included in our
study, the BF approach is preferable a test of the within-subjects
main effect. However, it isimportant to remember that, for the no-
normal data, none of the procedures was able to control the rates
of Typel error in all of the investigated conditions.

With regard to the test of the interaction effect, our results in-
dicate that the BF procedure can effectively control the rate of Ty-
pe | errors when group variance-covariance matrices are hetero-
geneous, even when the data were sampled from a chi-sguared
distribution with three degrees of freedom. Thisfinding held even
when the degree of heterogeneity of the covariance matrices was
varied across the design. As with the main effect, the procedure
tends to be conservative for negative pairings and severe values of
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coefficient of sample size variation. On the other hand, our results
also indicate that when the interest lies in the interaction, the WJ
test is not a adequate solution, since the sample sizes required to
achieve robustness could be unreasonably large, particularly
when the multivariate normality assumption is violated. For very
large sample sizes the procedure appear to be robust. Neverthe-
less, sample sizes superiors to 200 subjects could be required. Un-
fortunately, according to a survey conducted by Kowalchuk et al.
(1996), these values are not frequent in the current educational
and psychologica investigation. This result is consistent with the
findings of Algina and Keselman (1997) and Keselman and Lix
(1997).

Consequently, because the WJ procedure require large sample
sizes to obtain robust test of within-subjects effectsin multivaria-
te split-plot designs, in particular of the within-subjectsinteraction
effects, when the multivariate normality and variance homoge-
neity assumptions are not satisfied, we recommended that resear-
ches use the BF procedure. In addition of the available resultsin
Vallgjo et al. (in press), this recommendation is based in that in a
majority of the conditions used in the study the BF test was more

Table 4
Empirical Type | error rates for the interaction effect and multivariate normal distribution
Covariance Ratio
13: 1: 5/3 1/5: 1: 9/5
BF WJ BF WJ
N Struct. ny ny ng A a=.05 a=.01 a=.05 0=.01 a=.05 a=.01 a=.05 a=.01
072 CS 24 24 24 0.0 0.0507 0.0116 0.0811 0.0178 0.0458 0.0084 0.0803 0.0175
072 Cs 18 24 30 0.2 0.0514 0.0114 0.0751 0.0167 0.0518 0.0126 0.0751 0.0185
072 CS 30 24 18 0.2 0.0416 0.0071 0.1038 0.0286 0.0418 0.0080 0.1200 0.0384
072 CS 12 24 36 04 0.0544 0.0123 0.0803 0.0186 0.0539 0.0128 0.0775 0.0195
072 CS 36 24 12 04 0.0191 0.0022 0.2500 0.1123 0.0181 0.0020 0.2961 0.1431
072 AR 24 24 24 0.0 0.0494 0.0085 0.0787 0.0188 0.0460 0.0085 0.0819 0.0183
072 AR 18 24 30 0.2 0.0536 0.0107 0.0755 0.0176 0.0529 0.0120 0.0794 0.0179
072 AR 30 24 18 0.2 0.0389 0.0066 0.1018 0.0285 0.0399 0.0066 0.1254 0.0376
072 AR 12 24 36 04 0.0571 0.0119 0.0857 0.0199 0.0571 0.0151 0.0768 0.0185
072 AR 36 24 12 04 0.0210 0.0034 0.2567 0.1132 0.0162 0.0018 0.2954 0.1510
108 CS 36 36 36 0.0 0.0530 0.0125 0.0603 0.0111 0.0524 0.0128 0.0630 0.0133
108 Cs 27 36 45 0.2 0.0548 0.0138 0.0599 0.0127 0.0584 0.0129 0.0607 0.0116
108 CS 45 36 27 0.2 0.0472 0.0094 0.0718 0.0157 0.0503 0.0097 0.0742 0.0179
108 Cs 18 36 54 04 0.0594 0.0130 0.0634 0.0128 0.0578 0.0125 0.0583 0.0115
108 CS 54 36 18 04 0.0374 0.0063 0.1136 0.0348 0.0346 0.0056 0.1397 0.0475
108 AR 36 36 36 0.0 0.0528 0.0107 0.0615 0.0107 0.0549 0.0135 0.0623 0.0150
108 AR 27 36 45 0.2 0.0543 0.0140 0.0569 0.0138 0.0571 0.0142 0.0592 0.0139
108 AR 45 36 27 0.2 0.0469 0.0082 0.0666 0.0153 0.0483 0.0087 0.0761 0.0174
108 AR 18 36 54 04 0.0573 0.0133 0.0590 0.0129 0.0610 0.0150 0.0604 0.0115
108 AR 54 36 18 04 0.0358 0.0056 0.1054 0.0325 0.0343 0.0051 0.1331 0.0484
144 Cs 48 48 48 0.0 0.0531 0.0109 0.0593 0.0131 0.0553 0.0144 0.0547 0.0107
144 Cs 36 48 60 0.2 0.0538 0.0111 0.0541 0.0121 0.0560 0.0146 0.0531 0.0105
144 Cs 60 48 36 0.2 0.0501 0.0101 0.0626 0.0139 0.0513 0.0131 0.0600 0.0126
144 Cs 24 48 72 04 0.0597 0.0140 0.0564 0.0121 0.0640 0.0169 0.0573 0.0116
144 cs 72 48 24 04 0.0454 0.0092 0.0850 0.0224 0.0429 0.0083 0.0896 0.0244
144 AR 48 48 48 0.0 0.0576 0.0142 0.0590 0.0123 0.0571 0.0148 0.0541 0.0121
144 AR 36 48 60 0.2 0.0614 0.0138 0.0542 0.0103 0.0597 0.0147 0.0563 0.0109
144 AR 60 48 36 0.2 0.0502 0.0121 0.0619 0.0128 0.0527 0.0124 0.0583 0.0145
144 AR 24 48 72 04 0.0591 0.0134 0.0507 0.0114 0.0567 0.0150 0.0523 0.0123
144 AR 72 48 24 0.4 0.0447 0.0082 0.0858 0.0235 0.0418 0.0080 0.0908 0.0252
Note. BF| = Brown-Forsythe interaction effect test; WJ; = Welch-James interaction effect test; CS = Compound symmetric; AR = First-order autoregressive; A = Coefficient of sample sizeva-
riation; Bold values are not contained in the interval 120<4<3/2a.




AN EXAMINATION OF THE ROBUSTNESS OF THE MODIFIED BROWN-FORSY THE AND THE WELCH-JAMES TESTS...

robust than the WJ test. In short, the control of Type | error rates
was achieved in 90 percent of the cases with BF test, and only in
63 percent of the cases with WJ test. Thus, in our opinion, applied
researchers should be comfortable using the modified BF test to
analyze multi variate r epeated measures hypotheses when the as-
sumptions of the general linear model are violated.

As final note, four lines of additional research can be of inte-
rest. First, it is very important to investigate whether the multiva-
riate BF procedure offers robust tests when covariance matrices
vary across groups but are not multiples of one another. Second, in
the context of multivariate designs, it is not known whether the
performance of the tests will change using trimmed means and
Winsorized variances. However, the results obtained in the context
univariate are encouraging (see, Wilcox, Keselman, Muska and
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Cribbie, 2000). Third, which of the robust procedures will be most
senditive for detecting treatment effects. Fourth, additional rese-
arch manipulating other types of nonnormal distributions, both
symmetric and asymmetric distributions with light tail and heavy
tail, might also be investigated.

Acknowledgements

Esta investigacion fue subvencionado por por una ayuda del
Ministerio de Educacion (DGICYT PS95-0228) y de la Universi-
dad de Oviedo (IR99-0622).

Parte de los resultados del presente trabajo fueron presenta-
dos en el Sixth European Congress of Psychology, Julio de
1999, Roma.

Table5
Empirical Type| error rates for the interaction effect and multivariate nonnormal distribution
Covariance Ratio
1/3:1: 53 15: 1: 9/5
BF w3 BF W
N Struct. ny ny n3 A a=.05 a=.01 a=.05 a=.01 0=.05 a=.01 0=.05 a=.01
072 CS 24 24 24 0.0 0.0478 0.0089 0.0953 0.0217 0.0484 0.0098 0.1056 0.0308
072 Cs 18 24 30 0.2 0.0527 0.0093 0.0808 0.0192 0.0539 0.0114 0.0913 0.0229
072 CS 30 24 18 0.2 0.0400 0.0062 0.1192 0.0358 0.0451 0.0085 0.1579 0.0546
072 Cs 12 24 36 0.4 0.0579 0.0146 0.0871 0.0195 0.0510 0.0120 0.0821 0.0206
072 CS 36 24 12 04 0.0216 0.0023 0.2754 0.1265 0.0182 0.0017 0.3356 0.1677
072 AR 24 24 24 0.0 0.0524 0.0090 0.0982 0.0238 0.0517 0.0105 0.1189 0.0354
072 AR 18 24 30 0.2 0.0504 0.0097 0.0870 0.0195 0.0581 0.0135 0.0962 0.0253
072 AR 30 24 18 0.2 0.0412 0.0074 0.1369 0.0391 0.0421 0.0077 0.1646 0.0537
072 AR 12 24 36 04 0.0510 0.0112 0.0841 0.0172 0.0524 0.0110 0.0893 0.0216
072 AR 36 24 12 04 0.0224 0.0020 0.2769 0.1287 0.0189 0.0027 0.3444 0.1802
108 CS 36 36 36 0.0 0.0542 0.0123 0.0724 0.0179 0.0596 0.0125 0.0859 0.0219
108 Cs 27 36 45 0.2 0.0503 0.0100 0.0631 0.0124 0.0582 0.0128 0.0704 0.0161
108 CS 45 36 27 0.2 0.0516 0.0117 0.0906 0.0239 0.0502 0.0110 0.1027 0.0289
108 Cs 18 36 54 04 0.0574 0.0123 0.0646 0.0131 0.0607 0.0163 0.0665 0.0143
108 CS 54 36 18 04 0.0352 0.0062 0.1325 0.0456 0.0357 0.0057 0.1694 0.0636
108 AR 36 36 36 0.0 0.0576 0.0129 0.0773 0.0200 0.0599 0.0135 0.0871 0.0222
108 AR 27 36 45 0.2 0.0547 0.0133 0.0698 0.0145 0.0577 0.0143 0.0718 0.0162
108 AR 45 36 27 0.2 0.0502 0.0102 0.0915 0.0249 0.0509 0.0100 0.1018 0.0297
108 AR 18 36 54 04 0.0569 0.0121 0.0638 0.0135 0.0537 0.0137 0.0668 0.0153
108 AR 54 36 18 04 0.0382 0.0078 0.1437 0.0479 0.0382 0.0060 0.1849 0.0756
144 Cs 48 48 48 0.0 0.0554 0.0132 0.0656 0.0137 0.0582 0.0120 0.0699 0.0162
144 Cs 36 48 60 0.2 0.0557 0.0126 0.0596 0.0125 0.0584 0.0120 0.0700 0.0160
144 Cs 60 48 36 0.2 0.0514 0.0291 0.0732 0.0180 0.0589 0.0143 0.0862 0.0228
144 Cs 24 48 72 04 0.0545 0.0117 0.0553 0.0096 0.0629 0.0155 0.0602 0.0113
144 cs 72 48 24 04 0.0474 0.0084 0.1105 0.0338 0.0479 0.0099 0.1221 0.0415
144 AR 48 48 48 0.0 0.0555 0.0127 0.0633 0.0146 0.0584 0.0141 0.0735 0.0153
144 AR 36 48 60 0.2 0.0662 0.0141 0.0669 0.0147 0.0589 0.0143 0.0619 0.0151
144 AR 60 48 36 0.2 0.0566 0.0126 0.0826 0.0209 0.0557 0.0132 0.0850 0.0233
144 AR 24 48 72 0.4 0.0571 0.0137 0.0592 0.0104 0.0648 0.0142 0.0618 0.0125
144 AR 72 48 24 04 0.0495 0.0091 0.1189 0.0382 0.0486 0.0101 0.1312 0.0453
Note. BFj = Brown-Forsythe interaction effect test; WJ; = Welch-James interaction effect test; CS = Compound symmetric; AR = First-order autor egressive; A = Coefficient of sample sizeva-
riation; Bold values are not contained in the interval 120<8<3/2a.
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Table 6
Number of empirical alphalevels above and below the nominal alphalevel by the interval 5a<0<1.50
Normal Nonnormal
Sample Covariance Covariance BF WJ BF WJ
Sizes Structures Ratios B A B A B A B A
Main effect
072 Cs 1/3:1: 5/3 2 0 0 0 1 0 0 1
072 Cs 15:1: 9/5 2 0 0 0 1 2 0 7
072 AR 1/3:1: 5/3 2 0 0 0 1 2 0 3
072 AR 1/5:1: 9/5 2 0 0 0 1 4 0 8
108 Cs 1/3:1: 5/3 0 0 0 0 0 0 0 0
108 CS 1/5:1: 9/5 0 0 0 0 0 0 0 1
108 AR 1/3:1: 5/3 0 0 0 0 0 0 0 1
108 AR 15:1: 9/5 0 0 0 0 0 4 0 6
144 Cs 1/3:1:5/3 0 0 0 0 0 1 0 0
144 CS 1/5:1: 9/5 0 0 0 0 0 1 0 2
144 AR 13:1:5/3 0 0 0 0 0 0 0 0
144 AR 15:1: 9/5 0 0 0 0 0 2 0 2
Subtotal 8 0 0 0 4 16 0 31
Interaction effect
072 cs 13:1:5/3 2 0 0 10 2 0 0 10
072 cs 1/5:1: 9/5 2 0 0 10 2 0 0 10
072 AR 13:1:5/3 2 0 0 10 2 0 0 10
072 AR 1/5:1: 9/5 2 1 0 10 2 0 0 10
108 Cs 1/3:1:5/3 0 0 0 3 0 0 0 5
108 cs 1/5:1: 9/5 0 0 0 3 0 1 0 7
108 AR 1/3:1:5/3 0 0 0 3 0 0 0 6
108 AR 1/5:1: 9/5 0 0 0 4 0 0 0 8
144 Cs 1/3:1:5/3 0 0 0 2 0 0 0 3
144 Cs 1/5:1: 9/5 0 1 0 2 0 1 0 6
144 AR 1/3:1:5/3 0 0 0 2 0 0 0 4
144 AR 1/5:1: 9/5 0 0 0 2 0 0 0 6
Subtotal 8 2 0 61 8 2 0 85
TOTAL 16 2 0 61 12 18 0 116
Note. BF} = Brown-Forsy test; WJ; = Welch-James test; A= level above the nominal alpha; B = level below the nominal alpha; CS = Compound symmetric; AR = First-order autoregressive;
Bold values are not contained in the interval 1/2a<d<3/2a.
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