
The univariate repeated measures design containing a single
between-subjects (groups) factor A with j=1,…,p levels and nj ob-
servations at each j and a single within-subjects (occasions) factor
B with k=1,…,q levels is very frequent in almost all scientific
fields (Shoukri & Pause, 1999). Although the nature of these de-
signs is typically multivariate, the effects of design (occasions
main effect and groups x occasions interaction) can be tested by
using univariate or multivariate approach. The validity of these
procedures rests on the nature of the assumptions that the resear-
cher is willing to make about the data. When the assumptions of
multivariate normality, homogeneity of the covariance matrices,
and multisample sphericity are satisfied, such designs are analyzed

by Scheffé’s (1956) univariate mixed model. When the multisam-
ple sphericity assumption is not satisfied either an adjusted degre-
es of freedom univariate test or multivariate model perspective
may be used. Under a multivariate model, no restrictions are pla-
ced on the structure of the covariance matrix. However, the num-
ber of experimental observations must be greater or equal to the of
repeated measurements and, as the univariate model, the assump-
tions of dispersion matrix equality and normality must be satisfied.

If sphericity assumption is met, the conventional univariate
procedure is more powerful than the multivariate approach (Da-
vidson, 1972). However, if sphericity appears untenable no clear-
cut rule emerged for choosing between the adjusted degrees of fre-
edom univariate tests and their multivariate counterparts (Mendo-
za, Toothaker, & Nicewander, 1974). When covariance matrices
are unequal and the design is balanced (equal g roup sizes), Kesel-
man and Keselman (1990) have shown that both procedures are
generally robust to the violation of dispersion matrix equality. In
this case, the choice between univariate or multivariate technique
depends, especially, on differences in their statistical power. Ho-
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wever, none of these approaches can provide robust tests of wit-
hin-subjects main and interaction effects when matrices are hete-
rogeneous and group sizes are unequal. In this last situation, Algi-
na and Oshima (1995) suggested using the General Approxima-
tion or Improved General Approximation test due to Huynh
(1978), Keselman, Carriere, and Lix (1993) suggested using the
multivariate Welch-James (WJ) statistic given by Johansen (1980),
whereas Jones (1993) defends the mixed model approach. That is,
rather than presuming a certain type of structure, as is the case
with the univariate or a multivariate test statistic, the advocates the
mixed model approach modeling the covariance structure directly.
Yet, recently, Keselman, Algina, Kowalchuk and Wolfinger (1999)
have found that this new approach, as implemented in SAS (Rele-
ase 6.11 of PROC MIXED, SAS Institute, 1996), has some pro-
blems in identifying the correct structure, and, is times, it is prone
to depressed or inflated Type I error rates. For this reason they sug-
gest apply the approach cautiously, proposing as alternative solu-
tion the multivariate WJ statistic.

In a multivariate repeated measures experiment, each subject
gives a r-dimensional response on each of q occasions. In this ca-
se, if the r variables are statistically related or if the Type I error
rate is to be controlled experimentwise, either a multivariate mixed
model (MMM; the Scheffé’s mixed model generalized for appli-
cation to multivariate case) or doubly multivariate model (DMM)
perspective may be used. Both analyses require (a) that the popu-
lations sampled have a multivariate normal distribution, and (b)
that the dispersion matrices are the same for the populations sam-
pled. Otherwise, the MMM analysis rests upon a further assump-
tion, namely multivariate sphericity (M-sphericity). Simulation
studies have shown that the unadjusted MMM test cannot be re-
commended except when M-sphericity is known to hold. One si-
tuation in which the adjusted MMM test is more powerful than the
DMM test is when sample size is very small. If sample size is re-
asonably large, there appears to be little or no advantage in using
adjusted MMM tests. When the sample contains adequate infor-
mation to estimate the covariance matrix without requiring any
particular structural form, the DMM test must be preferred since
almost always provide g reater statistical power (Boik, 1991; Va-
llejo & Menéndez, 1997; Vallejo, Fidalgo, & Fernández, 1998). 

Vallejo, Fernández, Fidalgo, and Escudero (1999) evaluated the
power and robustness for the DMM test and the ε-corrected MMM
test suggested by Boik (1991) in the presence of heteroscedasticity
of the variance-covariance matrices and when data were non-nor-
mal in form under null and non-null hypothesis. Their results re-
vealed that these tests were extremely sensitive to departures from
covariance homogeneity when the design was unbalanced (une-
qual group sizes) and the sample size was small. When the design
was balanced, both adjusted MMM and MDM approaches exhibi-
ted a superior control of error rates. Data distribution had small ef-
fects on the Type I er ror rates and power for both procedures: the
DMM test was slightly liberal when the model was additive and
conservative when the model was non-additive; its effect for co-
rrected MMM tests was insignificant. These results are consistent
with the empirical literature (Keselman & Keselman, 1990; Kesel-
man & Lix, 1997; Mendoza et al. 1974; Olson, 1974; Rogan, Ke-
selman, & Mendoza, 1980). 

S u b s e q u e n t ly, Vallejo, Fi d a l go and Fe rnández (in press) eva l u a-
ted the ro bustness of the doubly mu l t iva ri ate model, We l ch - Ja m e s
mu l t iva ri ate solution and the mu l t iva ri ate ve rsion of the modifi e d
B row n - Fo rsythe (BF, 1974) pro c e d u re proposed by Rubin (1983)

and Mehro t ra (1997), within the context of one-way analysis of va-
ri a n c e. The perfo rmance of these pro c e d u res was inve s t i gated by
testing within-bl o cks sources of va ri ation in unbalanced mu l t iva-
ri ate split-plot designs containing unequal cova riance mat rices. Our
findings indicate that the doubly mu l t iva ri ate model did not prov i-
de effe c t ive Type I error control, while the We l ch - James pro c e d u re
p rovided ro bust and powerful tests of the within-subjects main ef-
fect; howeve r, this ap p ro a ch provided liberal tests of the intera c t i o n
e ffect. The results also indicate that the modified Brow n - Fo rs y t h e
p ro c e d u re provided ro bust tests of within-subjects main and inte-
raction effects, especially when the design was balanced, or wh e n
group sizes and cova riance mat rices we re positive ly paire d.

Vallejo et al. (in press) did not consider the effects of multiva-
riate non-normality on the operating characteristics of the exami-
ned procedures. Thus, additional research is necessary to determi-
ne if the findings obtained by Vallejo et al. (in press) can be gene-
ralized beyond the limited conditions they investigated. In particu-
lar, it is very important to examine the robustness of modified BF
procedure when the degree of heterogeneity of the covariance ma-
trices is varied across the designs and the data are not normally
distributed. Accordingly, the main purpose of this study is to com-
pare the Type I error rates of the WJ and modified BF statistics for
testing within-subjects main and interaction effects in multivariate
repeated measures designs, in the presence of heteroscedasticity
variance-covariance matrices and multivariate non-normality. A
second purpose of this study is to determine if the BF test offers a
greater control of Type I error rates for the interaction than the WJ
when the sample sizes are sufficiently large.

Definition of Test Statistics

The linear model for multivariate repeated measures can be
written as 

Y= XB + U, (1)

where Y is the N x qr response matrix, B is the p x qr matrix of pa-
rameters, X is the N x p design matrix of full rank, and U is the N
x qr matrix of random errors. If ε ’

i denotes a vector of random
e rro rs associated with the ith subject, it is assumed that ε’

i ~ N(0, ∑j)
where ∑j is the qr x qr matrix of dispersion corresponding to the
jth level of the between-subjects factor. Jointly,

vec(U) ~ N[0, (IN ^ ∑j)] (2)

where the symbol ^ represents the direct or Kronecker product of
two matrices. The fact that ∑j depends upon i means that the co-
variance matrices for the repeated measures vary across groups. 

Multivariate Brown-Forsythe (BF) test

The general linear hypothesis for the BF procedure can be writ-
ten as 

H0 : C’BA = 0 (3)

where C’ is a vh x p matrix of rank nh, B was defined before, and
A is a q x u matrix of rank u. Coefficients for between-subjects
contrasts are contained in C and coefficients for within-subjects
contrasts for the r dependent variables are contained in A.
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The BF statistics for testing the hypothesis concerning to the
within-subjects interaction, assuming (2), can be expressed in
terms of the matrices H and E*. These matrices take the following
form,

(4)

and

(5)

wh e re C’ = [Ip -1 : -1] and A = Ir ^ F, with F = [Iq -1 : -1] a n d
cj = (1 - nj | N). This form of E* matrix ensures that the expected

values of H and the expected value of are equal if the

null hypothesis is true, since mean vectors are being compared
across groups. 

Using results in Nel and van der Merwe (1986), the distribution

of matrix can be approximated as a sum of Wisharts

distribution

(6)

with degrees of freedom

(7)

The symbol tr denotes the trace of a matrix.
This hypothesis was tested using the F-test approximation to

Wilk’s L given by Rao (1951) as

(8)

where s* = [(m2 µ*2
h

- 4) / (m2 + µ*2
h

- 5)]1/2, µ*
1 = mµ*

h
, µ*

2 = {[µ*
e -

(m - µ*
h + 1) / 2] s* - (mµ*

h -2) /2}, µ*
h = µh.µ

*
h/(p-1), and Λ= |E*| |/|

E* + H|, with m equal to the dimension of E* and H and µ*
h equal

to

(9)

where M=R(R’GR)+ R’ and P=diag [(n1/N)-1∑1,…, (np/N)-1 ∑p],
with R=C’^(Ir^F’), G={[N-1(X’X)]-1^Λ}, Λ=diag (11, 02,…,
0qr), and (.)+ is the Moore - Pe n rose inve rse of (.). This hypothesis wa s
rejected at nominal α l evel if F > F( 1 -α) ; µ*1, µ*2, where F(1-α); µ*1, µ*2, is
the 100 (1-α) th percentile of the F-distribution with µ*1 and µ*2 de-
grees of freedom. 

The above result was established assuming that the quadratic
form H can be approximated as weighted sum of Wisharts distri-
bution

(10)

where each Wishart distribution in the sum has one degree of fre-
edom and λ1, λ2,…, λm are distinct nonzero eigenvalues of MP (or

PM). Taking Khatri (1980) find that

E(H)= λj µj, (11)
and  

V(H)= 2λ2
j µj . (12)

Equating the first two moments of the distribution of H
[E(H)=tr(MP) and V(H)=tr(MP)2] to those of a central Wishart
matrix and solving simultaneously the equations (11) and (12) we
obtained the equation (9).

The statistics used to test the within-subjects main effect hy p o t-
hesis also can be ex p ressed in terms of the mat ri c e s H a n d E~ wh e-
re

(13)

and

(14)

In equation (13), C’ is a 1 x p vector of ones, A is as previously
defined, and B~ = (n– /ñ)1/2 B̂, where the symbols n– and ñ designates
the arithmetic mean and the harmonic mean of nj’s, respectively.
Extending the results r eported by Nel and van der Merwe (1986),

the distribution of matrix can be approximated as a

sum of Wisharts distribution

(15)

with degrees of freedom

(16)

This hypothesis was tested using the F-test approximation to
Wilk’s L given by Rao as

(17)
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where s= [(m2µ2
h

- 4)/(m2 + µ2
h

- 5)]1/2, µ1= mµh, and µ•
2

=
{[µ•

e
- (m - µh + 1) / 2]s - (mµh - 2) / 2}.

The Welch-James (WJ) test

The multivariate WJ statistic for testing repeated measures
main and interaction effect hypotheses developed by Keselman et
al. (1993) according to Johansen (1980), can be used when the co-
variance homogeneity assumption is not satisfied. The approxima-
te degrees of freedom multivariate WJ type statistic is

TWJ = (Ry–)’ (RPR’)-1 (Ry–), (18)

where y is a pqr x 1 vector with elements obtained by stacking the
mean of yj, R = C’ ^ (Ir ^ F’) is a contrast matrix whose order
depends on the hypothesis tested, and P is a block diagonal matrix
of dimension pqr x pqr with the sample covariance matrices
weighted by n-1

j in the main diagonal. This test statistic, divided
by a constant, c, can be approximate by an F distribution with µ1
(rank of the R contrast matrix) and µ2= µ1(µ1 + 2) /(3A). The cons-
tant c= µ1 +2A - 6A /(µ1 +2), with

(19)

wh e re Qj is a bl o ck diagonal mat rix of dimension pqr x pqr, with the
j t h bl o ck equal to a qr x qr identity mat rix and ze roes elsewh e re.

Vallejo and Escudero (1998) showed that for testing H0 : R µ = 0,
the form of the R matrix depends on the tested effect. For the in-
teraction, R = C’ ^ (Ir ^ F’) where C’ is a (p - 1) x p coefficient
matrix that determines the elements of B include in the null hy-
pothesis, F is a q x (q - 1) coefficient matrix for testing hypothesis
about the repeated measures variable, and Ir is an r x r identity ma-
trix. Whereas for the within-subjects main effect (additive model
and unweighted means), R = c’ ̂ (Ir ^ F’) where c’ is a 1 x p vec-
tor of ones, F is a q x (q - 1) contrast matrix, and Ir is an r x r iden-
tity matrix. 

For both effects the H0 : R µ = 0, is rejected using a significan-
ce level of α if TWJ / c > F(1-α); µ1, µ2

, where F(1-α); µ1, µ2
is the 100

(1-α) th percentile of the F-distribution with µ1 and µ2 degrees of
freedom. 

Method

A Monte Carlo simulation study was undertaken to evaluate the
robustness of the BF and WJ statistics for testing within-subjects
main and interaction effects. The design investigated herein had
one between-subjects factor (p = 3), one within-subjects factor (q
= 4), and three dependent variables (r = 3). Five variables were
manipulated. These were: (a) total sample size (N), (b) nature of
the pairing of unequal covariance matrices and group sizes, (c) ty-
pes of population covariance structures, (e) degree of heteroge-
neity of the covariance matrices, and (e) types of distributions.

Based on the previous research findings, the first variable, N,
was selected such that the ratio of N / r (q-1) was ranged from 8 to
16. Thus, for r (q-1) = 9 , N = 72, 108, and 144. Though, unfortu-
nately, the last value is not very frequent in the educational and
psychological researches according to the survey conducted by
Kowalchuk, Lix, and Keselman (1996), for comparison purposes
we have adopted.

The second variable manipulated in the current investigation
was pairing condition. Null, positive and negative pairing of group
sizes and covariance matrices were investigated. A null pairing re-
fers to the case in which matrices are heterogeneous but the design
is balanced, that is, the size of the element values at the covarian-
ce matrices were not related with the group sizes because all
groups had an equal size. A positive pairing referred to the case in
which the largest nj was associated with the covariance matrix
containing the largest element values; a negative pairing referred
to the case in which the largest nj was associated with the cova-
riance matrix containing the smallest element values. For positive
a negative pairings, a moderate and substantial degree of group si-
ze inequality was investigated. The moderately unbalanced group
sizes had a coefficient of sample size variation (∆) equal to .20,
while the more disparate cases ∆ = .40, where

(20)

and n– is the average group size. When the design is balanced ∆ =
0, whereas when the design is unbalanced this coefficient increase
in value as group sizes become more disparate. Finally, the ratio of
the smallest group size (e.g., nmin) to r (q – 1) were set at 1.33 for
N = 72, 2 for N = 108, and 2.67 for N = 144.

The third variable investigated was the pattern of covariance
matrices. In this study, the forms of the dispersion matrices were
∑j= (Ψr ^ Vj) and ∑j= (Ψr ^ Wj), where Ψr represents the r x r
correlation matrix for the dependent variables, and Vj and Wj des-
cribes the covariance among the repeated measures associated
with a particular dependent variable. In the first condition the ma-
trix Vj had compound symmetry (CS), whereas in the second con-
dition the matrix Wj had serial correlation (AR). Though the BF
and WJ procedures are multivariate statistics and therefore should
not be dependent of the pattern of covariance matrices, Vallejo et
al. (1999) found that the rate of Type I error for the DMM test do-
es vary with the form of ∑. In particular, if the covariance matrix
has a Kronecker structure.

The fourth variable included in this study was the degree of he-
terogeneity of the covariance matrices. Two levels of dispersion
matrix inequality were varied: (∑1 = 1/3∑2 and ∑3 = 5/3∑2) and
(∑1 = 1/5∑2 and ∑3 = 9/5∑2). 

The last variable investigated was the type of distribution. Ty-
pe I error rates were obtained when the data were both normal and
non-normal in form. With respect to the former condition, the da-
ta were generated as follows:

1. For each level of the between-subjects factor, generate vec-
tors of pseudo-random normal variates. The GAUSS generator
RNDN (GAUSS Aptech Systems, 1997) was used to obtain all
vectors of normal variates. 

2. The corresponding multivariate observations were obtained
by the method of Schauer and Stoller (1966), that is, y’ij = Lzij +
µij, where L is a Cholesky factor of ∑j and zij is a vector of normal
variates obtained from the Kinderman and Ramage (1976) algo-
rithm.

The non-normal data for the current study we re sampled from a
ch i - s q u a red distri bution with three degrees of freedom as fo l l ow s :

1. For each level of the between-subjects factor, to obtain each
wij,, a vector of variates having a χ2 distribution with three degre-
es of freedom, three vectors of pseudorandom normal variates we-

∆ =
1
n

n j − n ( )2
/ p
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p
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 
  

1/2

,

A =
1
2

tr PR'(RPR')−1 RQj{ }2
+ t r ( P R ' ( R P R ' )−1 RQj ){ }2 

  
 
  j =1

p
∑ / ( nj − 1),

GUILLERMO VALLEJO AND J. RAMÓN ESCUDERO704



re squared and summed. The GAUSS generator RNDN (GAUSS
Aptech Systems, 1997) was used to generate all variates.

2. The χ2 va ri ates ge n e rated in the precedent step we re standard i-
zed to have a mean ze ro and va riance one using the population ex-
pected value and standard dev i ation. See Hasting and Pe a c o ck (1975)
for further details on the ge n e ration of data from this distri bu t i o n .

3. The corresponding multivariate observations were obtained
using the same procedure as was used for the normal distribution.

This particular type of χ2
(3) distribution with γ1 (skewness)=1.63

and γ2 (kurtosis)=4 was selected for three reasons. First, Micceri
(1989) investigated many data sets from educational and psycho-
logical research and found striking departures from normality. Se-
cond, this population represent relatively extreme but realistic
skew-leptokurtic distribution (see, Micceri, 1989, Wilcox, 1989).
Third, this population has been used in a number of previous stu-
dies designed to investigate of the robustness of the WJ procedure
(p.e., Keselman et al., 1993; Algina and Keselman, 1997). 

The simulation program was written in the GAUSS program-
ming language. All factors were completely crossed with one
another: three sample sizes (72, 108, and 144), five patterns of pai-
rings (one null, two positive, and two negative), two types of co-
variance structures, two levels of dispersion matrix inequality, and
two types of distributions. For each of the 3 x 5 x 2 x 2 x 2 = 120
cells of the design the number of replications was 10,000. Using
Wilk’s (1932) lambda, the BF and WJ statistics for testing hypot-
hesis concerning main and interaction effects were performed
using the 0.05 and 0.01 nominal significance level. A summary of
conditions included in the study is presented in Table1.

Results

Estimated Type I error rates (α̂) are reported in Table 2, in Ta-
ble 3, in Table 4, and Table 5. On these tables, α̂ outside the inter-
val α/2 ≤ α̂ ≤ 3/2α are in bold. According to this criterion, in or-
der for a test to be considered robust, its empirical rate of Type I
error must be contained in the interval (.025 ≤ α̂ ≤ .075) for the

5% level of significance, and in the interval (.005 ≤ α̂ ≤ .015) for
the 1% level of significance. Correspondingly, a test was conside-
red to be non-robust if, for a particular condition, its Type I error
was not contained in these intervals. Although to evaluate the ade-
quacy of robustness in control of Type I errors, several standards
have been used, Keselman and Lix (1997) used this criterion and
thus for comparison purposes we have adopted it as well. Nonet-
heless, it should be noted that with other standards different inter-
pretations of the results are possible .

Type I Error Rates for Tests of the Occasions Main Effect

Normally Distributed Data.Table 2 contains the empirical rates
of Type I error for the main effect of the BF and WJ tests for each
manipulated condition. 

As seen from table 2, the WJ statistic was able to control the
Type I error rates across all of the investigated conditions, even
when the sample sizes are small. Similar results were obtained
with the BF procedure, except for negative pairing condition,
when N = 72 and ∆ = .40. In this case, the procedure was always
conservative. The other two manipulated conditions, that is, cova-
riance ratios and pattern of covariance matrices had little effect on
the results associated with both procedures.

Nonnormally Distributed Data . Table 3 contains the empirical
rates of Type I error for the main effect when data were sampled
from a chi-squared distribution with three degrees of freedom.

As seen from table 3, when the data are obtained from a ske-
wed distribution increases Type I error rates for the BF and WJ
tests, in particular, for α = .01. For the BF test 4 conditions resul-
ted in Type I error rates below .005, and 16 rates above .015. Whe-
reas, for the WJ test 23 conditions resulted in Type I error rates
above .005, and 8 rates above .075.

In this case, contrary to what happened when data were sam-
pled from a multivariate normal distribution, covariance ratios and
pattern of covariance matrices had a superior effect on the robust-
ness of both procedures; especially, the degree of heterogeneity of
the covariance matrices. 
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Table 1
Summary of experimental conditions

Normal Data Nonnormal Data

1/3: 1:5/3 1/3: 1:5/3 1/5: 1:9/5 1/5: 1:9/5

N n1, n2, n3 Pairing ∆ CS AR CS AR CS AR CS AR

072 24 24 24 = 0.0 x x x x x x x x
18 24 30 + 0.2 x x x x x x x x
30 24 18 - 0.2 x x x x x x x x
12 24 36 + 0.4 x x x x x x x x
36 24 12 - 0.4 x x x x x x x x

108 36 36 36 = 0.0 x x x x x x x x
27 36 45 + 0.2 x x x x x x x x
45 36 27 - 0.2 x x x x x x x x
18 36 54 + 0.4 x x x x x x x x
54 36 18 - 0.4 x x x x x x x x

144 48 48 48 = 0.0 x x x x x x x x
36 48 60 + 0.2 x x x x x x x x
60 48 36 - 0.2 x x x x x x x x
24 48 72 + 0.4 x x x x x x x x
72 48 24 - 0.4 x x x x x x x x

Note. CS = Compound symmetric; AR = First-order autoregressive; ∆ = Coefficient of sample size variation; = stands for null pairing of unequal covariance matrices but equal g roup sizes; +
stands for positive pairing of unequal covariance matrices and unequal group sizes; – stands for negative pairing of unequal covariance matrices and unequal group sizes.



Type I Error Rates for Tests of the Groups x Occasions Inte -
raction Effect

Normally Distributed Data.Table 4 gives the empirical Type I
error rates obtained in the simulation for the interaction effect
when data were sampled from a multivariate normal distribution.

An inspection of the results in Table 4 indicates that, the B F
s t atistic was able to control the Type I error rates across all of the
i nve s t i gated conditions, ex c ept for negat ive pairing condition,
when N = 72, and ∆ = .40. In this case, the same as it hap p e n e d
for the main effect tests and norm a l ly distri buted data; the pro-
c e d u re had a tendency to have Type I error rates below the lowe r
limit of Bra d l ey ’s (1978) liberal cri t e rion interval. Howeve r, the
results in Table 4 show that the W J p ro c e d u re did not provide a
ro bust test of the within-subjects interaction effect, given that ex-
hibits poor control of the Type I error rates for many of the in-
ve s t i gated conditions. A careful ex a m i n ation of the Table 4 reve-
als that, when there was an inve rse re l ationship between sample
s i zes and dispersion mat rices and ∆ = .40, the W J p ro c e d u re wa s
a lways liberal and error rates we re, in some cases, may become

s eve re ly infl at e d. In fact, in Table 4, it is re a d i ly seen that wh i l e
B F s t atistic was able to control the Type I error rates in 110 of
the 120 inve s t i gated conditions the W J test had a liberal behav i o r
in more than half of the examined conditions. Consistent with the
findings of other re s e a rches, including Keselman and Lix (1997),
the degree of liberalness of the W J test decreasing as the sample
s i zes increases. 

N o n n o rm a l ly Distri buted Dat a . Table 5 contains the empiri-
cal rates of Type I error for the interaction effect when data we-
re sampled from a ch i - s q u a red distri bution with three degrees of
f re e d o m.

As seen from the table 5, when the multivariate normality as-
sumption was violated, the pattern of results associated with the
BF statistic was very similar to the one observed when the norma-
lity assumption was satisfied. For this procedure, the impact of
non-normality on Type I error rates is modest. With respect to the
WJ procedure, error rates associated with the skewed distribution
were almost always larger than those obtained for the normal dis-
tribution; in particular, for α = .01. For positive pairings, Type I
error rates associated with the skewed distribution were not always
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Table 2
Empirical Type I error rates for the within-subjects main effect and multivariate normal distribution

Covariance Ratio

1/3: 1: 5/3 1/5: 1: 9/5

BFM WJM BFM WJM

N Struct. n1 n2 n3 ∆ α=.05 α=.01 α=.05 α=.01 α=.05 α=.01 α=.05 α=.01

072 CS 24 24 24 0.0 0.0503 0.0094 0.0546 0.0103 0.0454 0.0090 0.0500 0.0100
072 CS 18 24 30 0.2 0.0464 0.0095 0.0490 0.0097 0.0468 0.0080 0.0486 0.0082
072 CS 30 24 18 0.2 0.0416 0.0060 0.0543 0.0088 0.0410 0.0074 0.0558 0.0107
072 CS 12 24 36 0.4 0.0515 0.0113 0.0541 0.0114 0.0515 0.0110 0.0534 0.0111
072 CS 36 24 12 0.4 0.0151 0.0020 0.0539 0.0071 0.0223 0.0125 0.0642 0.0078

072 AR 24 24 24 0.0 0.0481 0.0107 0.0530 0.0109 0.0479 0.0097 0.0546 0.0103
072 AR 18 24 30 0.2 0.0461 0.0087 0.0473 0.0089 0.0471 0.0108 0.0491 0.0108
072 AR 30 24 18 0.2 0.0418 0.0090 0.0514 0.0115 0.0411 0.0070 0.0543 0.0105
072 AR 12 24 36 0.4 0.0480 0.0084 0.0498 0.0085 0.0477 0.0090 0.0494 0.0092
072 AR 36 24 12 0.4 0.0186 0.0011 0.0588 0.0083 0.0215 0.0200 0.0610 0.0091

108 CS 36 36 36 0.0 0.0503 0.0090 0.0508 0.0086 0.0510 0.0094 0.0628 0.0099
108 CS 27 36 45 0.2 0.0510 0.0104 0.0509 0.0098 0.0505 0.0116 0.0597 0.0121
108 CS 45 36 27 0.2 0.0453 0.0074 0.0487 0.0076 0.0456 0.0081 0.0727 0.0117
108 CS 18 36 54 0.4 0.0464 0.0078 0.0465 0.0075 0.0488 0.0104 0.0555 0.0106
108 CS 54 36 18 0.4 0.0358 0.0058 0.0490 0.0069 0.0372 0.0054 0.0561 0.0105

108 AR 36 36 36 0.0 0.0464 0.0103 0.0471 0.0100 0.0450 0.0092 0.0553 0.0099
108 AR 27 36 45 0.2 0.0510 0.0107 0.0509 0.0104 0.0514 0.0109 0.0599 0.0105
108 AR 45 36 27 0.2 0.0458 0.0093 0.0494 0.0098 0.0454 0.0077 0.0711 0.0114
108 AR 18 36 54 0.4 0.0491 0.0113 0.0490 0.0108 0.0506 0.0115 0.0585 0.0119
108 AR 54 36 18 0.4 0.0339 0.0052 0.0498 0.0092 0.0394 0.0064 0.0564 0.0113

144 CS 48 48 48 0.0 0.0482 0.0107 0.0481 0.0103 0.0463 0.0089 0.0462 0.0086
144 CS 36 48 60 0.2 0.0513 0.0104 0.0504 0.0099 0.0481 0.0095 0.0476 0.0086
144 CS 60 48 36 0.2 0.0466 0.0089 0.0471 0.0087 0.0472 0.0091 0.0489 0.0089
144 CS 24 48 72 0.4 0.0539 0.0107 0.0532 0.0098 0.0485 0.0099 0.0477 0.0091
144 CS 72 48 24 0.4 0.0443 0.0068 0.0522 0.0087 0.0431 0.0059 0.0528 0.0082

144 AR 48 48 48 0.0 0.0461 0.0081 0.0460 0.0079 0.0470 0.0103 0.0475 0.0098
144 AR 36 48 60 0.2 0.0500 0.0093 0.0482 0.0085 0.0495 0.0097 0.0492 0.0092
144 AR 60 48 36 0.2 0.0459 0.0100 0.0464 0.0095 0.0488 0.0085 0.0505 0.0087
144 AR 24 48 72 0.4 0.0479 0.0103 0.0474 0.0101 0.0500 0.0087 0.0490 0.0081
144 AR 72 48 24 0.4 0.0406 0.0080 0.0491 0.0092 0.0413 0.0053 0.0494 0.0075

Note. BFM = Brown-Forsythe main effect test; WJ M = Welch-James main effect test; CS = Compound symmetric; AR = First-order autoregressive; ∆ = Coefficient of sample size variation;
Bold values are not contained in the interval 1/2α≤α̂≤3/2α.



larger than those obtained for the normal distribution. However,
for balanced designs and negative pairings, error rates associated
with the skewed distribution were always larger than those obtai-
ned for the normal distribution. In fact, for the BF test 8 conditions
resulted in Type I error rates below the lower limit of Bradley’s
(1978) liberal criterion interval. Whereas, for the WJ test 85 con-
ditions resulted in Type I error rates above upper limit of Bradley’s
liberal criterion. 

As was true for the main effect and skewed data, covariance ra-
tios and pattern of covariance matrices had a superior effect on the
robustness of both procedures; especially, the degree of heteroge-
neity of the covariance matrices.

Finally, Table 6 gives a summary of the number of empirical
Type I error rates above or below of interval α/2 ≤ α̂ ≤ 3/2α. Each
below and above cell corresponds to 10 conditions because the
count is aggregated over the 2 alpha levels and 5 pairing condi-
tions. 

An inspection of the results in Table 6 indicates that, the BF
statistic was able to control the Type I error rates in 432 of the 480
investigated conditions. In fact, for the BF test 28 conditions re-

sulted in Type I error rates below the lower limit of Bradley’s li-
beral criterion and 20 above upper limit of Bradley’s liberal crite-
rion. Whereas, for the WJ test 177 conditions resulted in Type I
error rates above upper limit of Bradley’s liberal criterion.

Discussion and conclusions

The purpose of this investigation was to compare the perfor-
mance of the modified BF approach presented by Vallejo et al. (in
press) with the performance of Johansen’s (1980) solution, when
testing within-subjects main and interaction effects in unbalanced
multivariate split-plot designs. Specifically, we examined the ro-
bustness of these procedures when the homogeneity of the cova-
riance matrices is not satisfied and data were obtained from the
non-normal chi-squared distribution. 

The results indicate that when covariance homogeneity as-
sumption was violated, but the normality assumption is satisfied,
both the BF and WJ test show a good control of Type I error rates
across all of the investigated conditions for the within-subjects
main effect. Although, for negative pairings and severe values of
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Table 3
Empirical Type I error rates for the within-subjects main effect and multivariate nonnormal distribution

Covariance Ratio

1/3: 1: 5/3 1/5: 1: 9/5

BFM WJM BFM WJM

N Struct. n1 n2 n3 ∆ α=.05 α=.01 α=.05 α=.01 α=.05 α=.01 α=.05 α=.01

072 CS 24 24 24 0.0 0.0608 0.0122 0.0611 0.0126 0.0668 0.0170 0.0729 0.0190
072 CS 18 24 30 0.2 0.0590 0.0123 0.0612 0.0125 0.0629 0.0146 0.0654 0.0151
072 CS 30 24 18 0.2 0.0486 0.0101 0.0615 0.0133 0.0556 0.0113 0.0757 0.0168
072 CS 12 24 36 0.4 0.0610 0.0138 0.0628 0.0135 0.0662 0.0159 0.0682 0.0157
072 CS 36 24 12 0.4 0.0236 0.0027 0.0756 0.0137 0.0269 0.0036 0.0827 0.0159

072 AR 24 24 24 0.0 0.0548 0.0128 0.0604 0.0133 0.0682 0.0195 0.0754 0.0175
072 AR 18 24 30 0.2 0.0597 0.0151 0.0620 0.0154 0.0705 0.0174 0.0737 0.0178
072 AR 30 24 18 0.2 0.0520 0.0112 0.0670 0.0142 0.0605 0.0159 0.0770 0.0201
072 AR 12 24 36 0.4 0.0607 0.0164 0.0676 0.0165 0.0672 0.0189 0.0692 0.0190
072 AR 36 24 12 0.4 0.0248 0.0032 0.0763 0.0126 0.0271 0.0440 0.0859 0.0176

108 CS 36 36 36 0.0 0.0569 0.0125 0.0579 0.0126 0.0597 0.0132 0.0603 0.0128
108 CS 27 36 45 0.2 0.0580 0.0126 0.0579 0.0124 0.0604 0.0124 0.0605 0.0119
108 CS 45 36 27 0.2 0.0512 0.0112 0.0550 0.0117 0.0607 0.0145 0.0718 0.0172
108 CS 18 36 54 0.4 0.0545 0.0115 0.0544 0.0146 0.0621 0.0148 0.0622 0.0150
108 CS 54 36 18 0.4 0.0400 0.0077 0.0570 0.0130 0.0443 0.0084 0.0650 0.0145

108 AR 36 36 36 0.0 0.0547 0.0121 0.0553 0.0116 0.0636 0.0170 0.0654 0.0166
108 AR 27 36 45 0.2 0.0513 0.0117 0.0511 0.0108 0.0670 0.0194 0.0667 0.0191
108 AR 45 36 27 0.2 0.0565 0.0143 0.0604 0.0151 0.0691 0.0176 0.0813 0.0205
108 AR 18 36 54 0.4 0.0568 0.0141 0.0604 0.0135 0.0644 0.0179 0.0642 0.0171
108 AR 54 36 18 0.4 0.0465 0.0078 0.0663 0.0128 0.0486 0.0091 0.0717 0.0167

144 CS 48 48 48 0.0 0.0543 0.0132 0.0541 0.0127 0.0562 0.0126 0.0561 0.0119
144 CS 36 48 60 0.2 0.0624 0.0146 0.0604 0.0141 0.0619 0.0149 0.0614 0.0143
144 CS 60 48 36 0.2 0.0619 0.0142 0.0631 0.0143 0.0602 0.0161 0.0623 0.0159
144 CS 24 48 72 0.4 0.0626 0.0152 0.0618 0.0146 0.0624 0.0131 0.0613 0.0123
144 CS 72 48 24 0.4 0.0548 0.0115 0.0632 0.0135 0.0601 0.0128 0.0746 0.0161

144 AR 48 48 48 0.0 0.0555 0.0124 0.0553 0.0116 0.0620 0.0139 0.0619 0.0139
144 AR 36 48 60 0.2 0.0663 0.0148 0.0643 0.0143 0.0639 0.0153 0.0633 0.0148
144 AR 60 48 36 0.2 0.0601 0.0139 0.0611 0.0137 0.0615 0.0154 0.0627 0.0153
144 AR 24 48 72 0.4 0.0593 0.0128 0.0588 0.0125 0.0608 0.0147 0.0602 0.0142
144 AR 72 48 24 0.4 0.0581 0.0117 0.0670 0.0142 0.0611 0.0128 0.0749 0.0161

Note. BFM = Brown-Forsythe main effect test; WJ M = Welch-James main effect test; CS = Compound symmetric; AR = First-order autoregressive; ∆ = Coefficient of sample size variation;
Bold values are not contained in the interval 1/2α≤α̂≤3/2α.



coefficient of sample size variation, the WJ test seems preferable
as a test of the within-subjects main effect, because it is never too
conservative neither excessively liberal test.

When normality and homogeneity assumptions are jointly vio-
lated, the WJ test does not perform as well with those sample si-
zes that can be considered the norm, rather than the exception in
the psychological and educational researches (see Kowalchuk et
al, 1997). In this case, at least for the conditions included in our
study, the BF approach is preferable a test of the within-subjects
main effect. However, it is important to remember that, for the no-
normal data, none of the procedures was able to control the rates
of Type I error in all of the investigated conditions. 

With rega rd to the test of the interaction effect, our results in-
d i c ate that the B F p ro c e d u re can effe c t ive ly control the rate of Ty-
pe I erro rs when group va ri a n c e - c ova riance mat rices are hetero-
geneous, even when the data we re sampled from a ch i - s q u a re d
d i s t ri bution with three degrees of freedom. This finding held eve n
when the degree of heterogeneity of the cova riance mat rices wa s
va ried across the design. As with the main effect, the pro c e d u re
tends to be conservat ive for negat ive pairings and seve re values of

c o e fficient of sample size va ri ation. On the other hand, our re s u l t s
also indicate that when the interest lies in the interaction, the W J
test is not a adequate solution, since the sample sizes re q u i red to
a ch i eve ro bustness could be unre a s o n ably large, part i c u l a rly
when the mu l t iva ri ate normality assumption is violat e d. For ve ry
l a rge sample sizes the pro c e d u re appear to be ro bust. Neve rt h e-
less, sample sizes superi o rs to 200 subjects could be re q u i re d. Un-
fo rt u n at e ly, according to a survey conducted by Kowa l chuk et al .
(1996), these values are not frequent in the current educat i o n a l
and psych o l ogical inve s t i gation. This result is consistent with the
findings of Algina and Keselman (1997) and Keselman and Lix
( 1 9 9 7 ) .

Consequently, because the WJ procedure require large sample
sizes to obtain robust test of within-subjects effects in multivaria-
te split-plot designs, in particular of the within-subjects interaction
effects, when the multivariate normality and variance homoge-
neity assumptions are not satisfied, we recommended that resear-
ches use the BF procedure. In addition of the available results in
Vallejo et al. (in press), this recommendation is based in that in a
majority of the conditions used in the study the BF test was more
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Table 4
Empirical Type I error rates for the interaction effect and multivariate normal distribution

Covariance Ratio

1/3: 1: 5/3 1/5: 1: 9/5

BFI WJI BFI WJI

N Struct. n1 n2 n3 ∆ α=.05 α=.01 α=.05 α=.01 α=.05 α=.01 α=.05 α=.01

072 CS 24 24 24 0.0 0.0507 0.0116 0.0811 0.0178 0.0458 0.0084 0.0803 0.0175
072 CS 18 24 30 0.2 0.0514 0.0114 0.0751 0.0167 0.0518 0.0126 0.0751 0.0185
072 CS 30 24 18 0.2 0.0416 0.0071 0.1038 0.0286 0.0418 0.0080 0.1200 0.0384
072 CS 12 24 36 0.4 0.0544 0.0123 0.0803 0.0186 0.0539 0.0128 0.0775 0.0195
072 CS 36 24 12 0.4 0.0191 0.0022 0.2500 0.1123 0.0181 0.0020 0.2961 0.1431

072 AR 24 24 24 0.0 0.0494 0.0085 0.0787 0.0188 0.0460 0.0085 0.0819 0.0183
072 AR 18 24 30 0.2 0.0536 0.0107 0.0755 0.0176 0.0529 0.0120 0.0794 0.0179
072 AR 30 24 18 0.2 0.0389 0.0066 0.1018 0.0285 0.0399 0.0066 0.1254 0.0376
072 AR 12 24 36 0.4 0.0571 0.0119 0.0857 0.0199 0.0571 0.0151 0.0768 0.0185
072 AR 36 24 12 0.4 0.0210 0.0034 0.2567 0.1132 0.0162 0.0018 0.2954 0.1510

108 CS 36 36 36 0.0 0.0530 0.0125 0.0603 0.0111 0.0524 0.0128 0.0630 0.0133
108 CS 27 36 45 0.2 0.0548 0.0138 0.0599 0.0127 0.0584 0.0129 0.0607 0.0116
108 CS 45 36 27 0.2 0.0472 0.0094 0.0718 0.0157 0.0503 0.0097 0.0742 0.0179
108 CS 18 36 54 0.4 0.0594 0.0130 0.0634 0.0128 0.0578 0.0125 0.0583 0.0115
108 CS 54 36 18 0.4 0.0374 0.0063 0.1136 0.0348 0.0346 0.0056 0.1397 0.0475

108 AR 36 36 36 0.0 0.0528 0.0107 0.0615 0.0107 0.0549 0.0135 0.0623 0.0150
108 AR 27 36 45 0.2 0.0543 0.0140 0.0569 0.0138 0.0571 0.0142 0.0592 0.0139
108 AR 45 36 27 0.2 0.0469 0.0082 0.0666 0.0153 0.0483 0.0087 0.0761 0.0174
108 AR 18 36 54 0.4 0.0573 0.0133 0.0590 0.0129 0.0610 0.0150 0.0604 0.0115
108 AR 54 36 18 0.4 0.0358 0.0056 0.1054 0.0325 0.0343 0.0051 0.1331 0.0484

144 CS 48 48 48 0.0 0.0531 0.0109 0.0593 0.0131 0.0553 0.0144 0.0547 0.0107
144 CS 36 48 60 0.2 0.0538 0.0111 0.0541 0.0121 0.0560 0.0146 0.0531 0.0105
144 CS 60 48 36 0.2 0.0501 0.0101 0.0626 0.0139 0.0513 0.0131 0.0600 0.0126
144 CS 24 48 72 0.4 0.0597 0.0140 0.0564 0.0121 0.0640 0.0169 0.0573 0.0116
144 CS 72 48 24 0.4 0.0454 0.0092 0.0850 0.0224 0.0429 0.0083 0.0896 0.0244

144 AR 48 48 48 0.0 0.0576 0.0142 0.0590 0.0123 0.0571 0.0148 0.0541 0.0121
144 AR 36 48 60 0.2 0.0614 0.0138 0.0542 0.0103 0.0597 0.0147 0.0563 0.0109
144 AR 60 48 36 0.2 0.0502 0.0121 0.0619 0.0128 0.0527 0.0124 0.0583 0.0145
144 AR 24 48 72 0.4 0.0591 0.0134 0.0507 0.0114 0.0567 0.0150 0.0523 0.0123
144 AR 72 48 24 0.4 0.0447 0.0082 0.0858 0.0235 0.0418 0.0080 0.0908 0.0252

Note. BFI = Brown-Forsythe interaction effect test; WJI = Welch-James interaction effect test; CS = Compound symmetric; AR = First-order autoregressive; ∆ = Coefficient of sample size va-
riation; Bold values are not contained in the interval 1/2α≤α̂≤3/2α.



robust than the WJ test. In short, the control of Type I error rates
was achieved in 90 percent of the cases with BF test, and only in
63 percent of the cases with WJ test. Thus, in our opinion, applied
researchers should be comfortable using the modified BF test to
analyze multivariate repeated measures hypotheses when the as-
sumptions of the general linear model are violated.

As final note, four lines of additional research can be of inte-
rest. First, it is very important to investigate whether the multiva-
riate BF procedure offers robust tests when covariance matrices
vary across groups but are not multiples of one another. Second, in
the context of multivariate designs, it is not known whether the
performance of the tests will change using trimmed means and
Winsorized variances. However, the results obtained in the context
univariate are encouraging (see, Wilcox, Keselman, Muska and

Cribbie, 2000). Third, which of the robust procedures will be most
sensitive for detecting treatment effects. Fourth, additional rese-
arch manipulating other types of nonnormal distributions, both
symmetric and asymmetric distributions with light tail and heavy
tail, might also be investigated.
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Table 5
Empirical Type I error rates for the interaction effect and multivariate nonnormal distribution

Covariance Ratio

1/3: 1: 5/3 1/5: 1: 9/5

BFI WJI BFI WJI

N Struct. n1 n2 n3 ∆ α=.05 α=.01 α=.05 α=.01 α=.05 α=.01 α=.05 α=.01

072 CS 24 24 24 0.0 0.0478 0.0089 0.0953 0.0217 0.0484 0.0098 0.1056 0.0308
072 CS 18 24 30 0.2 0.0527 0.0093 0.0808 0.0192 0.0539 0.0114 0.0913 0.0229
072 CS 30 24 18 0.2 0.0400 0.0062 0.1192 0.0358 0.0451 0.0085 0.1579 0.0546
072 CS 12 24 36 0.4 0.0579 0.0146 0.0871 0.0195 0.0510 0.0120 0.0821 0.0206
072 CS 36 24 12 0.4 0.0216 0.0023 0.2754 0.1265 0.0182 0.0017 0.3356 0.1677

072 AR 24 24 24 0.0 0.0524 0.0090 0.0982 0.0238 0.0517 0.0105 0.1189 0.0354
072 AR 18 24 30 0.2 0.0504 0.0097 0.0870 0.0195 0.0581 0.0135 0.0962 0.0253
072 AR 30 24 18 0.2 0.0412 0.0074 0.1369 0.0391 0.0421 0.0077 0.1646 0.0537
072 AR 12 24 36 0.4 0.0510 0.0112 0.0841 0.0172 0.0524 0.0110 0.0893 0.0216
072 AR 36 24 12 0.4 0.0224 0.0020 0.2769 0.1287 0.0189 0.0027 0.3444 0.1802

108 CS 36 36 36 0.0 0.0542 0.0123 0.0724 0.0179 0.0596 0.0125 0.0859 0.0219
108 CS 27 36 45 0.2 0.0503 0.0100 0.0631 0.0124 0.0582 0.0128 0.0704 0.0161
108 CS 45 36 27 0.2 0.0516 0.0117 0.0906 0.0239 0.0502 0.0110 0.1027 0.0289
108 CS 18 36 54 0.4 0.0574 0.0123 0.0646 0.0131 0.0607 0.0163 0.0665 0.0143
108 CS 54 36 18 0.4 0.0352 0.0062 0.1325 0.0456 0.0357 0.0057 0.1694 0.0636

108 AR 36 36 36 0.0 0.0576 0.0129 0.0773 0.0200 0.0599 0.0135 0.0871 0.0222
108 AR 27 36 45 0.2 0.0547 0.0133 0.0698 0.0145 0.0577 0.0143 0.0718 0.0162
108 AR 45 36 27 0.2 0.0502 0.0102 0.0915 0.0249 0.0509 0.0100 0.1018 0.0297
108 AR 18 36 54 0.4 0.0569 0.0121 0.0638 0.0135 0.0537 0.0137 0.0668 0.0153
108 AR 54 36 18 0.4 0.0382 0.0078 0.1437 0.0479 0.0382 0.0060 0.1849 0.0756

144 CS 48 48 48 0.0 0.0554 0.0132 0.0656 0.0137 0.0582 0.0120 0.0699 0.0162
144 CS 36 48 60 0.2 0.0557 0.0126 0.0596 0.0125 0.0584 0.0120 0.0700 0.0160
144 CS 60 48 36 0.2 0.0514 0.0291 0.0732 0.0180 0.0589 0.0143 0.0862 0.0228
144 CS 24 48 72 0.4 0.0545 0.0117 0.0553 0.0096 0.0629 0.0155 0.0602 0.0113
144 CS 72 48 24 0.4 0.0474 0.0084 0.1105 0.0338 0.0479 0.0099 0.1221 0.0415

144 AR 48 48 48 0.0 0.0555 0.0127 0.0633 0.0146 0.0584 0.0141 0.0735 0.0153
144 AR 36 48 60 0.2 0.0662 0.0141 0.0669 0.0147 0.0589 0.0143 0.0619 0.0151
144 AR 60 48 36 0.2 0.0566 0.0126 0.0826 0.0209 0.0557 0.0132 0.0850 0.0233
144 AR 24 48 72 0.4 0.0571 0.0137 0.0592 0.0104 0.0648 0.0142 0.0618 0.0125
144 AR 72 48 24 0.4 0.0495 0.0091 0.1189 0.0382 0.0486 0.0101 0.1312 0.0453

Note. BFI = Brown-Forsythe interaction effect test; WJI = Welch-James interaction effect test; CS = Compound symmetric; AR = First-order autoregressive; ∆ = Coefficient of sample size va-
riation; Bold values are not contained in the interval 1/2α≤α̂≤3/2α.
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Table 6
Number of empirical alpha levels above and below the nominal alpha level by the interval .5α≤α̂≤1.5α

Normal Nonnormal
Sample Covariance Covariance BF WJ BF WJ    

Sizes Structures Ratios B A B A B A B A

Main effect

072 CS 1/3:1: 5/3 2 0 0 0 1 0 0 1
072 CS 1/5:1: 9/5 2 0 0 0 1 2 0 7
072 AR 1/3:1: 5/3 2 0 0 0 1 2 0 3
072 AR 1/5:1: 9/5 2 0 0 0 1 4 0 8

108 CS 1/3:1: 5/3 0 0 0 0 0 0 0 0
108 CS 1/5:1: 9/5 0 0 0 0 0 0 0 1
108 AR 1/3:1: 5/3 0 0 0 0 0 0 0 1
108 AR 1/5:1: 9/5 0 0 0 0 0 4 0 6

144 CS 1/3:1: 5/3 0 0 0 0 0 1 0 0
144 CS 1/5:1: 9/5 0 0 0 0 0 1 0 2
144 AR 1/3:1: 5/3 0 0 0 0 0 0 0 0
144 AR 1/5:1: 9/5 0 0 0 0 0 2 0 2

Subtotal 8 0 0 0 4 16 0 31

Interaction effect

072 CS 1/3:1: 5/3 2 0 0 10 2 0 0 10
072 CS 1/5:1: 9/5 2 0 0 10 2 0 0 10
072 AR 1/3:1: 5/3 2 0 0 10 2 0 0 10
072 AR 1/5:1: 9/5 2 1 0 10 2 0 0 10

108 CS 1/3:1: 5/3 0 0 0 3 0 0 0 5
108 CS 1/5:1: 9/5 0 0 0 3 0 1 0 7
108 AR 1/3:1: 5/3 0 0 0 3 0 0 0 6
108 AR 1/5:1: 9/5 0 0 0 4 0 0 0 8

144 CS 1/3:1: 5/3 0 0 0 2 0 0 0 3
144 CS 1/5:1: 9/5 0 1 0 2 0 1 0 6
144 AR 1/3:1: 5/3 0 0 0 2 0 0 0 4
144 AR 1/5:1: 9/5 0 0 0 2 0 0 0 6

Subtotal 8 2 0 61 8 2 0 85

TOTAL 16 2 0 61 12 18 0 116

Note. BFI = Brown-Forsy test; WJI = Welch-James test; A= level above the nominal alpha; B = level below the nominal alpha; CS = Compound symmetric; AR = First-order autoregressive;
Bold values are not contained in the interval 1/2α≤α̂≤3/2α.
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