
Single-case designs allow psychologists to study the evolution 
of the behavior of a single experimental unit (an individual or a 
group taken as a whole) in different conditions. These conditions 
usually involve the presence or absence of psychological 
treatment and permit assessing its effectiveness for introducing 
modifi cations in the response of interest. However, the evaluation 
of the relationship between the intervention and the response 
rate requires baseline stability, phase alternation and replications 
across time and in different settings (Kazdin, 1978). Among 
the obstacles for single-case data analysis the shortness of data 
series (Huitema, 1985) and the serial dependence between the 
measurements (Matyas & Greenwood, 1997; Parker, 2006) have 
to be highlighted. The importance of the latter has been underlined 
due to its impact on Type I error rates on a variety of procedures 
(Busk & Marascuilo, 1988; Sharpley & Alavosius, 1988; Suen & 
Ary, 1987).

The present study centers on regression-based techniques for 
making statistical decisions regarding treatment effectiveness in N= 
1 designs. The reason for choosing this type of procedures is that they 
are well-known and can easily be applied using commonly available 
software even by psychologists who are not experts in statistics. 
Previous studies (Brossart, Parker, Olson, & Mahadevan, 2006; 
Parker & Brossart, 2003) have shown that the R2 values obtained 
by regression-based techniques for effect size estimation can be 
excessively low —in the case of Gorsuch’s (1983) Trend analysis— 
or excessively high for Allison and Gorman’s (1993) and White, 
Rusch, Kazdin, and Hartmann’s (1989) models. Additionally, positive 
autocorrelation leads to overestimating the effect size (Beretvas & 
Chung, 2008; Manolov & Solanas, 2008a). The abovementioned 
models have also been compared versus the no effect model using an 
F test, obtaining Type I error rates greater than 10% for autocorrelation 
of .3 (Fisher, Kelley, & Lomas, 2003). In contrast, there is evidence 
that the regression coeffi cients estimate precisely the data parameters 
defi ned by simulation (Solanas, Manolov, & Onghena, 2010) and, 
thus, it is necessary to test whether the p values associated with these 
coeffi cients are to be recommended for hypothesis testing. 

Regarding other alternatives for single-case data analysis, none 
of them has been established unequivocally as suitable, especially 
due to the infl uence of autocorrelation. Historically, the fi rst 
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The present study evaluates the performance of four methods for estimating regression coeffi cients 
used to make statistical decisions about intervention effectiveness in single-case designs. Ordinary least 
square estimation is compared to two correction techniques dealing with general trend and a procedure 
that eliminates autocorrelation whenever it is present. Type I error rates and statistical power are studied 
for experimental conditions defi ned by the presence or absence of treatment effect (change in level or 
in slope), general trend, and serial dependence. The results show that empirical Type I error rates do 
not approach the nominal ones in the presence of autocorrelation or general trend when ordinary and 
generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but 
prove to be insuffi ciently sensitive to existing treatment effects. Consequently, the use of the statistical 
signifi cance of the regression coeffi cients for detecting treatment effects is not recommended for short 
data series.

Técnicas fundamentadas en la regresión para la decisión estadística en diseños de caso único. El 
estudio evalúa el rendimiento de cuatro métodos de estimación de los coefi cientes de regresión 
utilizados para la toma de decisiones estadísticas sobre la efectividad de las intervenciones en diseños 
de caso único. La estimación por mínimos cuadrados ordinarios se compara con dos métodos que 
controlan la tendencia en los datos y un procedimiento que elimina la autocorrelación cuando ésta 
es signifi cativa. Los resultados indican que las tasas empíricas y nominales de falsas alarmas no 
coinciden en presencia de dependencia serial o tendencia al aplicar mínimos cuadrados ordinarios o 
generalizados. Los métodos que controlan la tendencia muestran tasas más bajas de error Tipo I, pero 
no son sufi cientemente sensibles a efectos existentes (cambio de nivel o de pendiente), por lo que el uso 
de la signifi cación estadística de los coefi cientes de regresión para detectar efectos no se recomienda 
cuando se dispone de series cortas de datos.
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technique applied was visual inspection (Johnston & Pennypacker, 
2008), but it has been shown that, among other drawbacks, false 
alarm rates tend to increase in presence of positive autocorrelation 
(Matyas & Greenwood, 1990). The closely related split-middle 
method (White, 1974) has also been shown not to control Type I 
error rates under serial dependence (Crosbie, 1987). Another simple 
technique proposed is the C statistic (Tryon, 1982), which is rather 
a fi rst-order autocorrelation estimator than an index for assessing 
intervention effectiveness (DeCarlo & Tryon, 1993). Analysis 
of variance assumes independence and nonzero autocorrelation 
affects the easiness of obtaining signifi cant results (Scheffé, 1959; 
Toothaker, Banz, Noble, Camp, & Davis, 1983). Randomization 
tests, on the other hand, do not assume explicitly the lack of 
serial dependence (Edgington & Onghena, 2007), but positive 
autocorrelation has been found to distort Type I error rates in some 
cases (Manolov & Solanas, 2008b) and to increase the probability 
of omitting an existing effect (Ferron & Ware, 1995). Although 
interrupted time-series analysis has been designed to control serial 
dependence (Harrop & Velicer, 1985) it has been shown to affect 
Type I error rates when few data points are available (Greenwood 
& Matyas, 1990).  

These fi ndings encourage exploring the Type I error rates and 
statistical power of regression-based techniques. In order to deal 
with the consequences of measuring behavior longitudinally, 
several proposals have been developed (see Arnau & Bono, 
2004, for a review). The following section presents in detail the 
procedures tested here. 

Procedures studied

The regression models used were common to all procedures and 
were specifi ed to detect separately level change or slope change 
(see formulae and design matrices X1 and X2, respectively, in the 
Appendix). The ordinary least squares (OLS) estimation uses the 
two models as presented in the Appendix, without modifi cation. 

The generalized least squares estimation (GLS; Simonton, 
1977a), also referred to as Autoregressive analysis by Gorsuch 
(1983), starts with an OLS estimation and then tests the residuals 
for independence (Durbin & Watson, 1971). If there is no 
autocorrelation OLS and GLS concur, whereas the presence of serial 
dependence leads to correcting the dependent variable according

to
 

y1
* = y1 1-r1

2
 
for the fi rst value and using

 
yt

* = yt-r1yt-1  
for

the following ones. In the previous expressions r
1
 is the estimate of 

the lag-one autocorrelation ρ
1
 calculated from the Durbin-Watson 

statistic d as r
1
= 1 – d/2. Simmonton (1977b, 1978) adds that the 

independent variable should also be corrected in the same way 
as the dependent variable. Design matrices X3 and X4 presented 
in the Appendix show the result of using these transformations. 
GLS’s fi nal step consists in an OLS estimation using the corrected 
variables. As the aforementioned steps indicate, GLS is intended to 
deal with serial dependence. 

Differencing analysis (DA; Gorsuch, 1983) has an initial step 
of differencing both the dependent and the independent variables, 
subtracting each value from the previous one. The transformed 
series has, thus, one value less than the original one. An OLS 
estimation is applied to the differenced series using the design 
matrices X5 and X6 from the Appendix for the level change and 
slope change models, respectively. This type of correction is 
designed for correcting linear trend. 

Trend analysis (TA; Gorsuch, 1983) includes an initial OLS 
regression analysis using time as independent variable (see design 
matrix X7 in the Appendix). The residuals of the analysis are saved 
and used as a dependent variable in OLS regressions using the X1 
and X2 design matrices for applying the level change and slope 
change models. The purpose of this procedure is also correcting 
linear trend, since the infl uence of time on the dependent variable 
is eliminated. 

Method

Series length selection

The present research focused on data series following the AB 
design structure representing an initial phase of assessment of the 
behavior of interest followed by treatment introduction. Since 
studies with few observation points are more feasible in applied 
psychological settings, the series (N) and phase lengths (n

A
 and n

B
) 

included here were: a) N= 10 with n
A
= n

B
= 5; b) N= 15 with n

A
= 5 

and n
B
= 10; and c) N= 20 with n

A
= n

B
= 10. 

Data generation

Data were generated to represent the main features of real 
behavioral data, such as serial dependence, general trend (i.e., a 
persistent upward or downward drift in data initiated during baseline 
phase and not related to treatment introduction), and different types 
of treatment effect. This was achieved using the model presented 
in Huitema and McKean (2000): y

t
= β

0
 + β

1
 T

t 
+ β

2
 LC

t
 + β

3
 SC

t
 

+ ε
t
, where y

t
 is the value of the dependent variable at moment 

t; β
0
 is the intercept, β

1
 is the coeffi cient used for specifying the 

magnitude of trend, β
2
 is the level change coeffi cient, and β

3
 is the 

slope change coeffi cient. The values of the dummy variables can 
be consulted from design matrix X8 in the Appendix. The error 
term, represented by ε

t
, was generated by means of a fi rst-order 

autoregressive model: ε
t
= ρ

1
 ε

t–1
 + u

t
 in which autocorrelation (ρ

1
) 

ranged from –.3 to .6 in steps of .3, representing the degrees of 
serial dependence found by Parker (2006). The u

t
 term was used to 

test three different distributions: normal, negative exponential and 
Laplace (double exponential). Similar Monte Carlo simulation 
studies have generally focused on the normal distribution, but 
there is evidence that it may not be always an adequate model 
for representing behavioral data (Bradley, 1977; Micceri, 1989) 
and, hence, nonnormal distributions have already been used 
to test the statistical properties of analytical techniques (e.g., 
Kowalchuk, Keselman, Algina, & Wolfi nger, 2004; Sawilowsky 
& Blair, 1992). In order to achieve the comparability of the u

t
 

term distributions, all of them had mean set to zero and standard 
deviation set to one. In the case of the negative exponential 
distribution, data were generated with location parameter θ= 0 and 
scale parameter σ= 1. Afterwards 1 was subtracted from data in 
order to center around zero. This distribution was included, since 
it is highly asymmetrical (γ

1
= 2) in comparison to the symmetrical 

normal distribution. Data following the Laplace distribution was 
generated with location parameter μ= 0 and scale parameter φ= 
.7071. This distribution was included to test the relevance of 
kurtosis, as it is leptokurtic (γ

2
= 3) in comparison to the normal 

distribution. 10,000 iterations were made per each experimental 
condition defi ned by the combination of series length, level of 
autocorrelation, and error distribution. 
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There is still no consensus on what values should be used for 
the beta parameters in the data generation model, since the effect 
size benchmarks proposed by Cohen (1988) are not appropriate 
for single-case data (Matyas & Greenwood, 1990; Parker et al., 
2005). In addition, related investigations do not specify explicitly 
the model used to generate the data nor the value of the effect 
size parameters (e.g., Keselman & Keselman, 1990; Parker & 
Brossart, 2003), while others select effect sizes in relation to the 
power they produce in statistical tests (e.g., Algina & Keselman, 
1998). In the current study, the β

0
 coeffi cient was set to zero as the 

pre-intervention response rate is irrelevant, while the remaining 
parameters were set to zero in the conditions referring to lack of 
trend or effect and to one for the conditions with general trend and 
treatment effect being present.

Data analysis

It has been emphasized that for regression analysis it is essential 
to fi t the correct model (Huitema & McKean, 1998) and, therefore, 
in the present study only the cases when the regression model 
specifi ed matched the known (simulated) truth were considered. 
In case the procedures performed well, it would only apply to the 
occasions when the researcher fi ts the right model. Conversely, 
an inappropriate performance even in this ideal situation would 
be strong evidence against the application of regression-based 
procedures for making statistical decisions. 

The performance of the procedures was assessed in terms of 
Type I error rates and statistical power using a nominal signifi cance 
level of .05. A Type I error occurs when the regression coeffi cient 
b for level or slope change is statistically signifi cant (i.e., has an 
associated p value ≤.05) and there is no treatment effect simulated 
in the data. In order to assess the correspondence between nominal 
and empirical Type I error rates, Serlin’s (2000) robustness criterion 
was used, specifying that Type I error is controlled when the true null 
hypothesis is rejected .05 ± (.025)(.05)= .025 to .075 of the times. 
A Type II error takes place when the regression coeffi cient for level 
or slope change has a p value > .05 in data series with intervention 
effect. In the current study, power —the complementary of Type 
II errors— was emphasized. Both in absence and in presence of 
treatment effect it was possible to explore the impact of trend and 
autocorrelation on the probability of labeling a behavioral change 
as statistically signifi cant. 

Results

Type I error rates

TA appears to be too conservative for all experimental conditions, 
including different series lengths and different error distributions, 
rejecting the null hypothesis practically never regardless of the 
values of the simulation parameters ρ

1
 and

 
β

1
. Therefore, results 

are presented only for OLS, GLS, and DA in Tables 1, 2 and 3, 
respectively. All three procedures keep the Type I error rates close 
to nominal 5% levels in independent data series with no general 
trend. The presence of positive autocorrelation and/or trend is 
associated with excessively high false alarm rates for OLS and 
GLS, although for longer series GLS performs slightly better than 
OLS. In contrast to data series with ρ

1
>0, when ρ

1
<0 and there is 

no general trend OLS and GLS are too conservative, an expected 
result considering that simulating negative autocorrelation implies 

more variability in the data series and makes diffi cult the detection 
of phase differences. When trend is present, GLS overcorrects for 
series with N≥15 and does not reject the null hypothesis almost 
ever. Regardless of the series length DA matches nominal alpha 
even when ρ

1
 ≠ 0 and/or β

1
 ≠ 0 for normal error series. Somewhat 

greater Type I error rates were observed for DA in the case of 
exponential and Laplace errors, although the estimates would still 
meet Serlin’s (2000) robustness criterion. 

Statistical power

OLS and GLS appear to be more sensitive to treatment effects 
(both level and slope changes) than DA and TA. Due to the 
excessively liberal Type I error rates provided by OLS and GLS 
in presence of trend and/or serial dependence, the interpretation of 
the power of the two techniques in these experimental conditions 
would be meaningless. The aforementioned conservativeness of 
TA was refl ected in extremely high Type II error rates. Therefore, 
power estimates will be presented only for DA (see Table 4), the 
only procedure controlling Type I error rates. DA shows certain 
sensitivity to level changes and none (i.e., lower than nominal 
alpha) to slope changes. In fact, for the condition for which 
comparisons are justifi ed (i.e., absence of autocorrelation and 
trend), DA shows less than one third of the power of OLS and 
GLS for level change and less than one twentieth for slope change. 
The power estimates are greater for longer data series but the 
improvement seems too small to be relevant. In accordance with 
the false alarm estimates, Type II error rates are slightly lower for 
exponential error data. Autocorrelation also has some infl uence 
on DA’s power, observing greater sensitivity for ρ

1
>0 and lower 

sensitivity for ρ
1
<0. Conversely, the presence of trend does not 

affect the statistical power of DA in any direction. 

Table 1
Type I error rates for ordinary least squares estimation for several experimental 

conditions

Data series
featuresa

Series
length

Exponentialb Normalb Laplaceb

LCc SCc LCc SCc LCc SCc

ρ
1
= 0, β

1
= 0

 

5+5 .0418 .0403 .0481 .0520 .0432 .0410
5+10 .0412 .0489 .0540 .0513 .0466 .0486

10+10 .0437 .0425 .0495 .0512 .0462 .0500

ρ
1
= .3, β

1
= 0

5+5 .1134 .1122 .1204 .1255 .1186 .1210
5+10 .1213 .1331 .1249 .1363 .1278 .1393

10+10 .1324 .1370 .1353 .1437 .1365 .1417

ρ
1
= .6, β

1
= 0

 

5+5 2368 .2628 .2368 .2503 .2428 .2646
5+10 2566 .3001 .2506 .2887 .2575 .3062

10+10 3197 .3194 .3046 .3085 .3151 .3151

ρ
1
= 0, β

1
= 1

5+5 .9890 .9961 .9981 .9999 .9924 .9992
5+10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10+10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ
1
= .3, β

1
= 1

 

5+5 .9870 .9950 .9938 .9992 .9878 .9971
5+10 .9999 1.0000 1.0000 1.0000 1.0000 1.0000

10+10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

a degree of autocorrelation (ρ
1
) and size of the trend parameter (β

1
)

b distribution of the random variable u
t

c regression model applied, testing for level change (LC) or slope change (SC)
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Discussion

The present study assesses the performance of four regression-
based techniques in terms of false alarm rates and capability of 
detecting existing effects. The comparison takes place in the 
context of single-case data series generated following three error 

distributions and including features such as autocorrelation and 
general trend.

The results obtained suggest that procedures involving OLS 
and GLS estimation of the regression parameters are useful only 
when data series are independent and present no general trend. In 
sequentially related data series these two procedures would reject 
the null hypothesis too often and may lead to inferring effectiveness 
even when interventions are innocuous. The fact that positive 
autocorrelation distorts the Type I error rates of GLS estimates 
indicates that the data correction performed by the procedure may 
need to be iterative instead of being applied only once. In contrast, 
the correction that takes place in TA is so strong that it eliminates 
both the effect of trend and serial dependence and the changes in data 
produced by the intervention. That is, the initial step in TA overcorrects 
the data and renders the procedure unable to detect treatment effects. 
Contrarily to the abovementioned procedures, DA shows Type I 
error rates approximately equal to nominal alpha even when data are 
autocorrelated and/or present general trend. Nevertheless, DA does 
not detect existing treatment effects frequently enough, particularly 
when the effect is a change in slope. Therefore, the differencing of the 
relevant variables also overcorrects, especially when the behavioral 
change resembles a trend. Hence, DA is not likely to label ineffective 
interventions as effective, but may be an excessively severe fi lter 
with high omission rates. Having more measurements available (up 
to twenty) does not improve suffi ciently the performance of DA, as 
it is also the case for the remaining procedures. The results obtained 
did not vary greatly according to the error distribution and the 
conclusions regarding Type I and Type II error rates are applicable 
to exponential, normal and Laplace distributions. Nonetheless, the 
inclusion of nonnormal distributions is useful for increasing the 
generalizability of the fi ndings.  

In summary, the results here obtained suggest that the OLS 
estimation of the regression parameters cannot be advised in short 

Table 2
Type I error rates for generalized least squares estimation for several 

experimental conditions

Data series
featuresa

Series
length

Exponentialb Normalb Laplaceb

LCc SCc LCc SCc LCc SCc

ρ
1
= 0, β

1
= 0

 

5+5 .0458 .0398 .0509 .0523 .0454 .0408
5+10 .0415 .0465 .0540 .0502 .0468 .0483

10+10 .0421 .0400 .0489 .0485 .0450 .0484

ρ
1
= .3, β

1
= 0

5+5 .1188 .1060 .1204 .1238 .1195 .1177
5+10 .1189 .1176 .1191 .1220 .1212 .1277

10+10 .1201 .1124 .1158 .1225 .1193 .1198

ρ
1
= .6, β

1
= 0

5+5 .2255 .2309 .2237 .2279 .2273 .2385
5+10 .2045 .2182 .1908 .2187 .1984 .2270

10+10 .2086 .1962 .1912 .1966 .1983 .1916

ρ
1
= 0, β

1
= 1

5+5 .6404 .9698 .7010 .9705 .6654 .9767
5+10 .0212 1.0000 .0068 1.0000 .0132 1.0000

10+10 .0178 .9998 .0072 1.0000 .0122 1.0000

ρ
1
= .3, β

1
= 1

5+5 .5446 .9323 .5912 .9214 .5615 .9366
5+10 .0148 .9999 .0041 1.0000 .0077 .9999

10+10 .0177 .9965 .0102 .9984 .0126 .9988

a degree of autocorrelation (ρ
1
) and size of the trend parameter (β

1
)

b distribution of the random variable u
t

c regression model applied, testing for level change (LC) or slope change (SC)

Table 3
Type I error rates for differencing analysis for several experimental conditions

Data series
featuresa

Series
length

Exponentialb Normalb Laplaceb

LCc SCc LCc SCc LCc SCc

ρ
1
= 0, β

1
= 0

5+5 .0691 .0500 .0510 .0414 .0601 .0552
5+10 .0702 .0734 .0480 .0462 .0616 .0582

10+10 .0706 .0606 .0477 .0432 .0607 .0561

ρ
1
= .3, β

1
= 0

5+5 .0657 .0596 .0546 .0475 .0654 .0551
5+10 .0706 .0699 .0541 .0543 .0613 .0607

10+10 .0690 .0647 .0542 .0481 .0590 .0593

ρ
1
= .6, β

1
= 0

5+5 .0704 .0690 .0499 .0496 .0671 .0529
5+10 .0640 .0681 .0513 .0545 .0667 .0640

10+10 .0616 .0592 .0507 .0495 .0700 .0595

ρ
1
= 0, β

1
= 1

5+5 .0709 .0551 .0475 .0411 .0580 .0481
5+10 .0740 .0682 .0479 .0468 .0576 .0649

10+10 .0715 .0690 .0452 .0446 .0640 .0582

ρ
1
= .3, β

1
= 1

5+5 .0657 .0562 .0518 .0451 .0652 .0525
5+10 .0680 .0707 .0492 .0529 .0655 .0624

10+10 .0661 .0649 .0471 .0472 .0639 .0586

a degree of autocorrelation (ρ
1
) and size of the trend parameter (β

1
)

b distribution of the random variable u
t

c regression model applied, testing for level change (LC) or slope change (SC)

Table 4
Power estimates for differencing analysis for several experimental conditions

Data series
featuresa

Series
length

Exponentialb Normalb Laplaceb

LCc SCc LCc SCc LCc SCc

ρ
1
= 0, β

1
= 0

5+5 .1155 .0454 .0893 .0253 .1050 .0329
5+10 .1249 .0556 .0960 .0299 .1069 .0407

10+10 .1141 .0548 .1057 .0348 .1103 .0426

ρ
1
= .3, β

1
= 0

5+5 .1480 .0494 .1042 .0304 .1220 .0351
5+10 .1356 .0617 .1116 .0337 .1215 .0414

10+10 .1358 .0527 .1142 .0256 .1261 .0412

ρ
1
= .6, β

1
= 0

5+5 .1622 .0533 .1085 .0330 .1294 .0361
5+10 .1572 .0511 .1233 .0309 .1303 .0435

10+10 .1480 .0499 .1290 .0300 .1359 .0380

ρ
1
= 0, β

1
= 1

5+5 .1249 .0435 .0842 .0237 .1051 .0321
5+10 .1262 .0600 .0976 .0328 .1116 .0470

10+10 .1211 .0587 .0978 .0314 .1086 .0415

ρ
1
= .3, β

1
= 1

5+5 .1434 .0510 .1038 .0287 .1182 .0329
5+10 .1358 .0554 .1111 .0337 .1190 .0416

10+10 .1316 .0542 .1191 .0282 .1248 .0398

a degree of autocorrelation (ρ
1
) and size of the trend parameter (β

1
)

b distribution of the random variable u
t

c regression model applied, testing for level change (LC) or slope change (SC)
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series, even when it is complemented by data correction methods 
(i.e., the trend or autocorrelation elimination intended by DA, TA, 
and GLS). Fitting the correct regression model and controlling 
trend and serial dependence whenever present does not ensure 
that the p values associated with the regression parameters are 
useful for making decisions regarding treatment effectiveness. It 
would be important to test whether the GLS estimation improves 
with the transformation of the independent variables proposed 
by Maddala and Lahiri (2007), prior to labeling the procedure’s 
controlling step as ineffective. On the other hand, the proposal of 
McKnight, McKean, and Huitema (2000) might be a solution to 
the OLS problems when few serially dependent measurements are 
available, but it is not implemented in the most common statistical 
software avilable to applied psychologists. 

The conclusions reached in the present study should be restricted 
to the procedures included and are limited by the type of effect 

studied (immediate and permanent) and by the two-phase design 
structure. Further research is needed to modify the regression-
based procedures in order to improve their performance in single-
case designs. These improvements need to have an effect on both 
p values and R2 values, due to the utility of the latter (Cohen, 
1990; 1994; Wilkinson & Task Force on Statistical Inference, 
1999). Additionally, the new proposals with contrasted statistical 
properties ought to be implemented via programming codes in the 
most frequently used statistical packages. 
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Design matrix X1 for the OLS level change model y
t
= b
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 + b
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Design matrix X2 for the OLS slope change model y
t
= b

0
 + b

1
 SC

t
 +e, where SC is the 

dummy variable for slope change, taking values as presented in the second column; n
B
 is 

the phase B length:
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⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Design matrices for GLS estimation corresponding to the level change (X3) and slope 
change (X4) regression models; r

1
 is the estimation of the fi rst-order autocorrelation 

parameter ρ
1
 obtained from the Durbin-Watson d statistic and PV represents the previous 

value in the series. 

  

X3 =

1 0

1 0

1 0

− −
1 1− r1PV

1 1− r1PV

1 1− r1PV

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

X4 =

1 0

1 0

1 0

− −
1 0 − r1PV

1 1− r1PV

1 (nB −1)− r1PV

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Design matrices for differencing analysis corresponding to the level change (X5) and slope 
change (X6) regression models. Since differencing is performed on the dummy variables 
without distinguishing between phases, each dummy variable contains N−1 values instead 
of N values, where N is series length. 

  

X5 =

1 0

1 0

1 0

− −
1 1

1 0

1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

X6 =

1 0

1 0

1 0

− −
1 0

1 1

1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Design matrix for the regression model y
t
= b

0
 + b

1
 T

t 
+ e used as a fi rst step of Trend analysis, 

where T is the time variable taking values as presented in the second column; n
A
 is the phase 

A length: 

  

X7 =

1 1

1 2

1 nA

− −
1 nA +1

1 nA + 2

1 nA + nB

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Design matrix for the data generation model y
t
= β

0
 + β

1
 T

t 
+ β

2
 LC

t
 + β

3
 SC

t
 + ε

t
, where T, 

LC, and SC are dummy variables for trend, level change, and slope change, respectively, 
taking values as shown in columns two, three, and four.

  

X8 =

1 1 0 0

1 2 0 0

1 nA 0 0

− − − −
1 nA +1 1 0

1 nA + 2 1 1

1 nA + nB 1 nB −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Appendix (continuated)
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