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When analyzing data from a factorial design A × B, the applied 
researcher has many possible alternatives to consider, depending 
on the nature of the factors (fi xed vs. random), the availability of 
the design structure (replicated vs. non-replicated) and the number 
of replicates (balanced vs. unbalanced) of the treatment structure.

Assuming that the design is replicated and balanced, the most 
common situation in psychological research arises when the two 
factors are fi xed (i.e., the levels of both factors are arbitrarily selected 
by the researcher), and the result is Model I or fi xed effects model, as 
classifi ed by Eisenhart (1947). Using notation of effects (Ato & Vallejo, 
2007, 187-190; Palmer, 2011, 19), Model I structural equation
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and F-ratios are shown in Table 1.
Rarely used in psychology, except in some sectors of 

psycholinguistic and meta-analytic research, are studies where 
both factors are random (i.e., the levels of both factors are selected 
at random), the structural equation of Model II or random effects 
model (Eisenhart, 1947) is
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). Table 2 shows 

E(MS) and F-ratios for this model. 
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Abstract Resumen

Background: With the 2-way mixed model, one a fi xed factor and the 
other random, the procedure followed to test statistical signifi cance of the 
random factor has been the focus of a heated controversy in theoretical 
and applied statistics, and the debating continues even now. One of the 
main consequences of this controversy is that the position defended in the 
classical ANOVA texts on the hypothesis of the signifi cance of the random 
effect is not the same as that defended in almost all of the professional 
statistical software programs. Method: In this paper, we deal with a detailed 
analysis about the controversy of mixed model and the decision about one 
of two basic options, the non restrictive and the restrictive model. Results: 
Three key questions we consider to go beyond the controversy are: (1) the 
two classical models are equivalent, (2) the marginality principle do not 
allow to test main effects in presence of interactive signifi cant effects and 
(3) the relevance of linear mixed approach to analyze models with fi xed 
and random effects. Conclusions: We propose the simple solution of using 
the mixed linear approach with REML estimation instead of the classical 
linear approach, which is really unapplicable in this context.

Keywords: mixed approach, linear mixed model, mixed model 
controversy.

El modelo mixto de dos factores: una larga y tortuosa controversia. 
Antecedentes: en el modelo mixto de dos factores, con un factor fi jo y el 
otro aleatorio, la forma de probar la signifi cación del factor aleatorio ha sido 
objeto de una enconada controversia en la estadística teórica y aplicada que 
todavía hoy sigue siendo objeto de polémica. Una de las consecuencias más 
sorprendentes de esta contro-versia es que la posición que se defi ende en los 
textos clásicos de ANOVA sobre la prueba de hipótesis del factor aleatorio 
no es la misma que la defendida en casi todos los programas estadísticos 
profesionales. Método: en este trabajo se aborda un análisis detallado de 
la controversia sobre el modelo mixto y la decisión de adoptar una de las 
dos opciones básicas, el modelo no restrictivo o el modelo restrictivo. 
Resultados: las cuestiones clave que se consideran para trascender esta 
controversia son: (1) las dos opciones básicas son matemáticamente 
equivalentes, (2) el principio de marginalidad no permite probar efectos 
principales en presencia de efectos interactivos signifi cativos y (3) la 
pertinencia del enfoque lineal mixto para analizar modelos con efectos 
fi jos y aleatorios. Discusión: en este trabajo se propone como solución 
a la controversia la utilización del enfoque lineal mixto con estimación 
REML en menoscabo del enfoque lineal clásico, que resulta inaplicable 
en este contexto.

Palabras clave: enfoque mixto, modelo lineal mixto y controversia del 
modelo mixto.
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An intermediate situation arises when one factor is fi xed (e.g., 
a levels of factor A are selected arbitrarily) and the other factor 
is random (e.g., b levels of factor B are selected at random). The 
result is Model III or mixed effects model (Eisenhart, 1947). Some 
situations in psychology (e.g., agreement studies) use a mixture 
of random (subjects) and fi xed (raters) factors. More complicated 
situations use hierarchical linear models (Oliver, Rosel, & Jara, 
2000; Vallejo, Arnau, & Bono, 2009).

There are three possible ways (the third being a variant of 
the second) appropriate for defi ning the two-way mixed model 
(McLean, Sanders, & Stroup, 1991; Schwarz, 1993). The fi rst 
way is
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variables. In this model, the interactive effects are also considered 
as random: (αB)

jk
 ∼ NID(0, σ2

αB
) and their E(MS) are built on the 

principle of considering as random any term that contains at least 
one random component without any restriction, which is also 
known as the non-restricted mixed model (Ato & Vallejo, 2007, 
p. 232) or mixed model IIIa. The E(MS) and F ratios of model IIIa 
are shown in Table 3.

The second way is
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the interactive effects are subject to restriction 
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for all k, which is also known as the restricted mixed model (Ato 
& Vallejo, 2007, 232-238) or mixed model IIIb. The E(MS) for 
this model are built on the principle of considering as random only 
those interactive terms resulting from combining a basic factorial 
effect (whether fi xed or random) with another factorial effect 
which must be strictly random, and are shown in Table 4. A major 
consequence of this restriction is the presence of correlation, given 
that the covariance between interactive terms for the same level of 
B and different levels of fi xed factor A is different from zero:

 cov((αB)*
jk
, (αB)*

j'k
)= -σ2

(αB)*
 / (a-1), for all j ≠ j' (5)

It is somewhat strange to use restrictions on a random variable 
that represents interaction effects (although it greatly facilitates the 
interpretation of the random effects for factor B), so many authors 
use the model without including any restrictions.

The third way is a variant of Model IIIb, which appears in some 
reference texts and is based on the same principle (given a factorial 
effect, fi xed or random, the interaction term must be considered 
as random if it results from being combined with another random 
factorial effect), but it does not use restriction. The result is very 
similar to the restricted mixed model of Table 4, but the E(MS) 

ignore the restriction 
j=1
a ˆ( ) jk

*
= 0 , producing a particular

result which is sometimes called mixed model IIIc to distinguish it 
from the mixed model IIIb. Although in this paper we do not often 
use this variant of restricted mixed model, its E(MS) and F ratios 
are displayed in Table 5.

A careful comparison of the E(MS) in Tables 3 and 4 will 
show that the essence of the problem lies in the different way they 
present the random factor B. The E(MS) of the IIIa model include 
the term nσ2

αB
, which is not included in the E(MS) of model IIIb. 

Table 1
E(MS) and F-ratios of fi xed-effect model (Model I)

Source Component Mean square E(MS)  F-ratio

A Fixed MSA σ2
e 
+ nbθ2

α
MSA / MSE

B Fixed MSB σ2
e 
+ naθ2

B
MSB / MSE

AB Fixed MSAB σ2
e 
+ nθ2

αB
MSAB / MSE

Residual Random MSE σ2
e 

Table 2
E(MS) and F-ratios of random-effects model (Model II)

Source Component MS E(MS) F-ratio

A Random MSA σ2
e 
+ nσ2

αB
+ nbσ2

α
MSA / MSAB

B Random MSB σ2
e 
+ nσ2

αB
+ naσ2

B
MSB / MSAB

AB Random MSAB σ2
e 
+ nσ2

αB
MSAB / MSE

Residual Random MSE σ2
e

Table 3
E(MS) and F-ratios of non-restricted mixed model (Model IIIa)

Source Component MS E(MS) F-ratio

A Fixed MSA σ2
e 
+ nσ2

αB
+ nbθ2

α
MSA / MSAB

B Random MSB σ2
e 
+ nσ2

αB
+ naσ2

B
MSB / MSAB

AB Random MSAB σ2
e 
+ nσ2

αB
MSAB / MSE

Residual Random MSE σ2
e

Table 4
E(MS) and F-ratios of restricted mixed model (Modelo IIIb)

Source Component MS E(MS) F-ratio

A Fixed MSA e
2
+ n

a

a 1 B
2

+ nb a
2 MSA / MSAB

B Random MSB e
2
+ na B

2 MSB / MSE

AB Random MSAB e
2
+ n

a

a 1 ( B)*
2

MSAB / MSE

Residual Random MSE e
2

Table 5
E(MS) and F-ratios of restricted mixed model (Model IIIc)

Source Component MS E(MS) F-ratio

A Fixed MSA σ2
e 
+ nσ2

αB
+ nbθ2

α
MSA / MSAB

B Random MSB σ2
e 
+ naσ2

B*
MSB / MSE

AB Random MSAB σ2
e 
+ nσ2

(αB)*
MSAB / MSE

Residual Random MSE σ2
e
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As a consequence, in the fi rst we used F = MSB / MSAB to test 
the effect of B factor, while in the second we used instead F= MSB 
/ MSE. The problem is obvious. When a researcher uses a mixed 
model with two factors and wants to test the effect of B, which 
model should be used, the non-restricted or the restricted form of 
the mixed model?

Although the problem is defi ned here for the simplest case, 
i.e., for a replicated and balanced model with two factors, it has 
greater importance in more complex cases, such as unbalanced and 
mixed models with more than two factors. The empirical evidence 
from an example by Keppel (1991, p. 564) serves to illustrate the 
problem. Using the R program (version 2.14) the script required to 
obtain a 2×4 factorial ANOVA output with all factors fi xed is

> Y = c(3,2,1,1,5,3,5,9,10,10,3,3,6,6,4,3)
> A = as.factor(gl(2,8,labels=c(“a1”, “a2”)))
> B = as.factor(rep(gl(4,2,labels=c(“b1”, “b2”, “b3”, “b4”)),2))
> summary(mod1 = aov(Y ~ A*B)) 

 Df Sum Sq Mean Sq F value Pr(>F)  

A 1 16.00 16.000 11.6364 0.009207 
B 3 40.25 13.417 9.7576 0.004752 
A:B 3 60.50 20.167 14.6667 0.001291 
Residuals 8 11.00 1.375          
         

Note that the F ratios and P values of the ANOVA output 
assume that this is model I, since all the MS are tested against the 
residual error term. Therefore, if we want to analyze the mixed 
model with A fi xed and B random, the output would not be correct. 
Using E(MS) and the mixed model F-ratios for the non-restricted 
case (see Table 3) to test the effect of B, we obtained F (3;3)= 
13.417/20.167= 0.665, P= .627, enabling us to conclude that the 
effect of B is not statistically signifi cant with the mixed model 
IIIa. Using E(MS) and appropriate F ratios for the restricted case 
(see Table 4) to test the effect of factor B we obtained F (3;8)= 
13.417/1.375= 9.758, P= .005, and the conclusion is now that the 
effect of B is statistically signifi cant with the mixed model IIIb. 
This latter result is also true with the mixed model IIIc, which 
disregards the fi nite correction, because the correction does not 
essentially affect the construction of F-ratios. However, these three 
models can produce different estimates of variance components. 
Using the method of moments or ANOVA (see Searle, Casella, 
& McCullogh, 1992; Cox & Solomon, 2003), Table 6 presents 
the estimation of variance components for the three models with 
the Keppel data, where the discrepancy can be observed in the 
estimates of the components (and the corresponding proportion) of 
the variance and the total variance.

The presence of discordant results in the F-ratios and the 
estimation of variance components requires help from the applied 
researcher. This is the main purpose of this work, where we develop 
fi rstly the main discussion of the mixed-model controversy in the 
academic tradition and the existing divorce between the academic 
tradition and the applied software afterwards. Finally we advocate 
settling this fruitless controversy with a solution based on three 
fundamental aspects of the problem.

The academic debate

The mixed effects model with two factors has been the object of a 
long and heated debate which, despite the numerous attempts made 
to resolve it, remains virtually in its same original state. To a large 
extent, the problem has become chronic as a result of the divorce 
that seems to exist between the academic and applied contexts.

At the root of the problem seems to be the classic analysis 
of variance text (Scheffé, 1959), which was the fi rst to submit 
a thorough development of the mixed 2-factor model. Hartley 
and Searle (1969) were the fi rst to report the existence of a 
“discontinuity” in the data analysis with mixed models of 2 factors 
establishing that the procedures for determining the E(MS) for 
unbalanced data included the term nσ2

(αB)
, while the vast majority 

of the advanced texts at the time did not include such a term for 
balanced data.

Shortly thereafter, a seminal work by Hocking (1973) discussed 
the three alternative models for the 2-way factor mixed model and 
concluded that the covariance matrix was the key issue generating 
the problem.

In the same vein, McLean, Sander & Stroup (1991) also 
discussed the main mixed models and proposed the use of the mixed 
approach to analyze the data because it allows us to assume the 
existence of a correlation between the random effects. Meanwhile, 
Schwarz (1993) rigorously defi ned the three forms of mixed 
models and conducted a thorough review of the coverage that the 
professional statistical packages (BMDP, SAS and SPSS) and the 
main reference texts in the fi eld (Christensen, 1987, Hocking, 1985; 
Milliken & Johnson, 1984; Neter, Kutner, & Waserman, 1990; 
Searle, 1987) gave to mixed models in the early 90’s, claiming that 
most of the reference texts preferred to use the restricted model (or 
its variant), while the statistical packages prefer the non-restricted 
model (in the case of SPSS, with incorrect results).

Voss (1999) planned to resolve the dispute between the two 
basic models appealing to overpopulation fi nite models to defi ne 
the random effects model, initially opting for the restricted 
model. However, two letters to the editor in response to their 
work (Hinkelmann, 2000; Wolfi nger & Stroup, 2000) highlighted 
the preponderance of the non-restricted model in the statistical 
packages for its fl exibility and pragmatism. In his reply, Voss 
(2000) changed his initial position concluding that, in the absence 
of a sound reason to introduce restrictions on the parameters, it was 
more convenient to use the non-restricted model.

The last known attempt to resolve this controversy was outlined 
in two papers published by Lencina, Singer & Stanek III (2005) and 
Lencina & Singer (2006), who emphasized the formal similarity 
of the two mixed model forms IIIa and IIIb with model I and in 
line with Voss’s proposal, they showed that the ratio F= MSB / 
MSE behaved like an F statistic, accurate both within the non-
restricted and the restricted model. In response to this proposal, 
Nelder (2008) noted that the hypothesis to test the effect of B has 

Table 6
Components of variance for models IIIa,b,c (Keppel’s data, 1991)

Source Component Model IIIa Model IIIb Model IIIc

A Fixed – – –

B Random -1.687 (0%) 3.010 (33%) 3.010 (22%)

AB Random 9.396 (87%) 4.698 (52%) 9.396 (68%)

Residual Random 1.375 (13%) 1.375 (15%) 1.375 (10%)

Total variance 10.771 9.083 13.781
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no practical interest and demonstrated how to develop a consistent 
solution to the problem based on two basic arguments: 1) the 
principle of marginality and 2) the need to use restrictions on the 
estimates but not on the parameters. In their reply, Lencina, Singer 
& Stanek III (2008) defended their initial proposal calling for the 
non-universality of the principle of marginality and the need for 
restrictions on parameters to facilitate their interpretability.

The academic-applied divorce

The divorce is becoming increasingly apparent between the 
academic context, where the most representative statistical texts 
are created, and the applied computing context, which outlines the 
successive versions of professional statistical packages used by 
applied researchers. While teaching is the main focus in the fi rst 
context, based on the consistent demonstration of the arguments, 
the second is focused on pragmatism and the practical applicability 
of all analytical techniques.

Many of the reference texts on analysis of variance and most 
infl uential experimental designs in psychological research until 
the end of the last century provided an irregular treatment of the 
mixed model with 2 factors. While some design texts presented an 
acceptable level (Montgomery, 1984), in others it was superfi cial 
(e.g., Keppel, 1982; Kirk, 1982; Winer, 1971; Winer, Brown, 
& Michels, 1991) or even null (e.g., Myers, 1979; Myers & 
Well, 1991). Other general texts provided a much more detailed 
treatment (for example, Glass & Hopkins, 1996; Hays, 1988; Neter 
& Wasserman, 1985). Moreover, following the academic tradition, 
they all defended the use of the restricted model.

The treatment of the 2-factor mixed model has changed 
signifi cantly in the reference texts at the beginning of this century 
and it is now much more uniform and detailed (e.g., Hinkleman 
& Kempthorne, 2004; Howell, 2010; Maxwell & Delaney, 2004; 
Montgomery, 2009; Oehlert, 2010). All of them continue to use 
the restricted model, but the existence of the non-restricted model 
is at least simply mentioned, leaving it to the discretion of the 
researcher to use one or the other.

The situation is quite different in the computational context. 
Almost all professional statistical packages (e.g., SAS, SPSS, 
SPLUS, GENSTAT) use the non-restricted model based on 
pragmatic criteria, such as the lack of fl exibility of the restricted 
model and its diffi culties in dealing with unbalanced data. The 
E(MS) and variance components are estimated assuming the 
model is non- restricted, so users are forced to manually calculate 
F tests if they want to use the restricted model. The most important 
exception is the MINITAB package, version 16.2, which gives 
users the option to estimate the parameters with either of the two 
basic models.

Three key aspects to settle the controversy

The core of the controversy about the mixed model with two 
factors is, assuming a fi xed factor (A), how to test the effect of the 
random factor (B). The two basic options are the non-restricted 
model (mixed model IIIa) and the restricted model (mixed model 
IIIb), which can achieve different results. But the key question 
may not be which of the two models should be used, but whether 
there is a solution to the dispute which does not require the use of 
one of the two alternatives. There are three clarifi cations worth 
noting in this direction.

The two basic models are equivalent

Searle (1971) and Searle, Casella and McCullagh (1992), on 
the one hand, and Hocking (1973, 1985), on the other, have shown 
the mathematical relationships between the models of equations 
(3) and (4) and their equivalence. Following Searle, Casella and 
McCullagh (1992, pp. 126-128), the equation (3) can be rewritten 
as follows

Y
ijk

= (μ' + ᾱ
.
) + (α

j
 – ᾱ

.
) + (B

k
 + (αB)

.k
) + ((αB)

jk
 – (αB)

.k
)+e

ijk
=

 μ' + α'
j
 + B'

k
 + (αB)'

jk
 + e

ijk
 (6)

thus obtaining again the equation (4), which proves the close link 
between models IIIa and IIIb. In addition, given that estimates of 
the variance of the random factor B and the AB interaction are 
different for the two models, it is very simple to convert between 
the two models estimating their respective variance components.

Using the ANOVA method (see Searle, Casella, & McCullogh, 
1992) to estimate the variance components for the random terms, 
and assuming that σ̂2

e
= MSE is the same in both cases, the estimates 

of variance components for the non-restrictive (model IIIa) are for 
data from Keppel (1991):

 σ̂2
B
= (MSB - MSAB) / an= (13.417 – 20.167) / 4= -1.687 

 σ̂2
αB

= (MSAB - MSE) / n= (20.167 – 1.375) / 2= 9.396  (7)

and for the restrictive (model IIIb):

 σ̂2
B*

= (MSB - MSE) / an= (13.417 – 1.375) / 4= 3.010
 σ̂2

αB*
= [(a–1)MSAB - MSE] / an= [(1)(20.167 – 1.375) / 4= 4.698 (8)

Note that with respect to model IIIa, the estimation of variance 
for model IIIc does not change and so σ̂2

αB
= σ̂2

αB*
.

Now, comparing equations (7) and (8), the link between the two 
models is obtained noting that 

 σ̂2
(αB)*

= (a–1) σ̂2
(αB) 

/ a (9)
 σ̂2

B*
= σ̂2

B 
+ σ̂2

(αB) 
/ a (10)

and the equivalence between them is evident from (10), because 
the E(MS) for the non-restricted mixed model (left) and for the 
restricted mixed model (right) are equal:

 σ̂2
e 
+ naσ̂2

B
+ nσ̂2

αB 
= σ̂2

e 
+ naσ̂2

B*
 (11)

So it is very important to highlight that, although the two main 
models are different, they are essentially equivalent. 

The marginality principle

Most remarkable in the debate on the mixed model was 
the response of Professor Nelder (one of the most genuine 
representatives of the Fisherian tradition at Rothamsted) to what 
he called “the great disruption of the mixed model”. Nelder’s 
position in this debate was initially expressed in a controversial 
work in which he expressed his dissatisfaction with the way linear 
models were exposed in reference texts and professional statistical 
software (Nelder, 1977), a position he reiterated over time (Nelder, 
1994; Nelder, 1995; Nelder & Lane, 1995; Nelder, 1998;  Nelder, 
2008).
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His argument is that the components of the mixed ANOVA 
with two factors (constant or global mean, A, B and A*B) should 
be ordered according to their terms of marginality, where A and 
B represent subspaces of A*B, the constant represents a subspace 
from A and B, and therefore is marginal to A and B, and A and B 
are in turn marginal to A*B. The principle of marginality implies 
that for a sensible and meaningful interpretation all statistical 
models must respect the marginality relations between terms. 
Some of the consequences of this principle for the mixed model 
with 2 factors are:

* If the interaction A*B is included in the model, the main 
effects and the constant should also be included;

* If the interaction A*B is signifi cant, the main effects should 
not be tested or interpreted and instead only the interaction 
effect should be interpreted. This would be the case of the 
example of Keppel.

* If the interaction A*B is not signifi cant, the model should 
be simplifi ed removing the interactive component and testing 
the main effects with the resulting additive model.
 
Statistical orthodoxy in general recommends respecting the 

principle of marginality, but it should be noted that there are some 
very rare exceptions to the principle. The most fl agrant case is that 
of a model with signifi cant interaction and non signifi cant main 
effects, which graphically would correspond to an X-shaped non-
ordinal interaction. Another extreme situation occurs when the 
sums of the squares for the main effects are considerably larger 
than those of the interaction. For these cases, Nelder (1994, 2008) 
recommends using a suitable solution. Thus, in the fi rst case, a 
main effect can be tested in the presence of interactions, taking the 
interaction as an error term and using the reciprocal value of F with 
its corresponding degrees of freedom. In the second case, a test of 
main effects also uses the interaction as an error term in order to 
determine whether additional variation exists with respect to that 
shown by the interaction component.

The principle of marginality is closely associated with another 
heated controversy on the use of type I, II, III and IV sums of 
squares, particularly with unbalanced models (see Herr, 1986; 
Langsrud, 2003; Nelder & Lane, 1995; Vallejo, Fernández, & 
Livacic-Rojas, 2010), which was probably also one of the causes 
of divorce between the academic and applied fi elds.

The usefulness of the mixed approach

The most sensitive statistical procedure for analyzing the 
data from a mixed model with 2 factors is currently Mixed 
Linear Modeling (MLM), which associated with the method of 
REstricted Maximum Likelihood estimation (REML), represents 
a comprehensive approach that includes regression, ANOVA 
and ANCOVA as special cases and can also be generalized to 
categorical response variables. The REML method produces 
unbiased results and its purpose is to divide the likelihood function 
into two components: the fi rst includes all the fi xed parameters and 
the second includes all the parameters of variance and covariance 
of random effects. The MLM approach with REML estimation is 
an extremely fl exible, which has become the standard for analyzing 
empirical data with any combination of fi xed and random effects 
(see Verbeke & Molenberghs, 1997). However, the demand for 
classical ANOVA tables, more familiar and manageable for the 

applied researcher has probably slowed the expected popularization 
of the mixed approach.

A typical output of the MLM approach to data from Keppel 
(1991) is shown in Table 8. Note that the results are shown 
separately for fi xed and random effects. For fi xed factor A, 
we report the value of the conventional F test, which shows 
that is not statistically signifi cant. For the random factor B, the 
interaction A*B and the residual component, the report includes 
the corresponding variance component without the null hypothesis 
testing controversy.

The results differ from those obtained with models IIIa, IIIb and 
IIIc, but they allow us to conclude fi rstly that the model typically 
used is the non-restrictive one, since it is not necessary to introduce 
any restriction in the estimation of the parameters, and secondly 
that the effect of factor B is actually null. Furthermore, the 
estimated variance component for interaction A*B is different for 
models IIIa, IIIb and IIIc due to the use of the REML estimation 
criterion. Specifi cally, assuming a balanced design, if the variance 
component of B is positive, the method of moments produces the 
same result as the REML procedure for estimating the variance of 
the interaction A*B, and if negative, the estimate of the variance 
of the interaction is also the same if the variance of B is previously 
subtracted from the variance of A*B (by comparing Tables 7 and 
8 it will be seen that this is precisely what happens with Keppel’s 
data). However, this result is different when the design is not 
balanced.

The differences between the classical approach and the MLM 
approach are extremely dramatic when the design contains any 
combination of mixed effects with more than 2 factors and/or is not 
balanced. With the classical approach, some sources of variation 
of the mixed model with three or more factors require quasi-F 
ratios and it is not possible to estimate the degrees of freedom 
for the denominator by the usual Sattherthwaite approximation 

Tabla 7
F-ratios and variance components for all efects of models proposed for 1991 
Keppel’s data, (I: A & B fi xed; II: A & B random; III: A fi xed & B random)

Models A B AB

I F(1,8)= 11.6; P= .009 F(3,8)= 9.76; P= .005 F(3,8)= 14.7; P= .001

II F(1,3)= .79; P= .439 F(3,3)= .665; P= .627 F(3,8)= 14.7; P= .001

IIIa (non restricted) F(1,3)= .79; P= .439
F(3,3)= .665; P= .627 

σ2
B
= -1.687= 0

F(3,8)= 14.7; P= .001
σ2

(αB)
= 9.396

IIIb (restricted) F(1,3)= .79; P= .439
F(3,8)= 9.76; P= .005

σ2
B*

= 3.010
F(3,8)= 14.7; P= .001

σ2
(αB)*

= 4.698

IIIc (restricted, but 
ignoring restriction)

F(1,3)= .79; P= .439
F(3,8)= 9.76; P= .005

σ2
B*

= 3.010
F(3,8)= 14.7; P= .001

σ2
(αB)*

= 9.396

Table 8
Results from mixed approach with REML estimation

Source Component  Random effects    Fixed effects

A Fixed – F(1,6)= .953; P= .367

B Random σ2
B
= 0 –

AB Random
σ2

(αB)
= 7.708

Z= 1.59; P= .056
–

Residual Random
σ2

e
= 1.375

Z= 2.00; P= .023
–
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(Ato & Vallejo, 2007, 239), so we cannot test them or estimate 
their variance components, as revealed by the ANOVA outputs 
of professional statistical packages. With the MLM approach 
associated with REML estimation, by separating the fi xed and 
random effects, all sources of variation can be estimated.

Another major drawback of the classical approach to estimating 
mixed models is that it assumes that all variance components are 
independent and identically distributed. The mixed approach does 
not require this assumption because it incorporates the structure 
and relationships between errors and the variance components of 
the model.

Conclusions

Taking into account these clarifi cations, we suggest that the long 
and winding controversy over the 2-factor mixed model, regarding 
the different ways to test the effect of factor B with models IIIa, 
IIIb and IIIc, despite the intense debate that seems have led to a 
divorce between the academic and the applied environment, should 
be defi nitely settled for three reasons. Firstly, it has been shown 
that the two basic models (IIIa and IIIb) are statistically equivalent, 
and therefore it is not necessary to raise a dispute. Secondly, using 
the principle of marginality, the null hypothesis of factor B is 
meaningless if the interaction A*B is signifi cant and instead, the 
nature of the interaction must be analyzed in depth (Ato & Vallejo, 

2007; Pardo, 2006), or the problem disappears when the interaction 
A*B is not signifi cant because a more parsimonious additive model 
is required. Thirdly, the analysis of mixed models must be carried 
out in its natural setting (i.e., the MLM approach with REML 
estimation) which, fortunately, all professional statistical packages 
now incorporate, contrary to the classical approach, which, as we 
have shown here, is not the best framework for analyzing data from 
a mixed design. However, this suggestion requires the applied 
researcher to become familiar with the display of results of the 
MLM approach with REML estimation, separating the fi xed and 
random effects and interpreting them independently, and to stop 
demanding output formats based on classical ANOVA tables that 
produce contradictory and sometimes diffi cult to interpret results 
(see Ato & Vallejo, 2007; Palmer & Ato, 2012). The output of the 
MLM approach displayed by SAS Proc Mixed, SPSS Mixed, Stata 
xtmixed, GENSTAT Linear Mixed Models and lme and lmer R 
packages, in spite of some minor differences, represents at the 
present time the most satisfactory solution for analyzing data from 
mixed designs. 
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