

Revelation of tin and niobium occurrences in Southern Uis Region of Namibia through a geological reconnaissance study

PRAKASH K. SINGH

Department of Geology, Banaras Hindu University, Varanasi-221005, India, e-mail: prakashbhu@rediffmail.com

Abstract: The paper presents the results of a geological reconnaissance carried out by the author in the Southern Uis region, Namibia. During the present reconnaissance geological studies, close grid sampling was carried out in the investigated area covering about six sq km and a total of 153 individual samples were collected and analysed for their tin, niobium and tantalum contents. The analysis of the samples shows that 14 of them have high positive anomalous values of SnO_2 and 58 samples gave good values of Nb_2O_5 . The samples showing positive values are mainly eluvial in nature and are located in the central portion of the investigated area. As such this area can be mined manually by small group of miners.

Key words: Reconnaissance, tin, niobium, tantalum, Uis, Namibia.

Resumen: Se destacan los resultados de una prospección geológica realizada en una área de 6 km² en el sur de la región de Uis (Namibia). Durante ésta, fueron recogidas un total de 153 muestras y analizadas para determinar su contenido en Estaño, Niobio y Tántalio. Una proporción relativamente importante de las mismas registran valores positivos altos de SnO₂ y buenos de Nb₂O₅ y proceden de depósitos eluviales localizados en la parte central del área estudiada, que podría ser explotada manualmente por pequeños grupos de mineros.

Palabras clave: Prospección geológica, Estaño, Niobio, Tantalio, Uis, Namibia.

Generally tin, tantalum and niobium occur in association with one-another. Pegmatites are supposed to be the largest source of tantalum in the world and an important tin producer. Owing to their petrogenetic significance, the oxides of tin, tantalum and niobium have been extensively studied which throws light on the genesis of granitic pegmatites enriched with rare elements (Cerny et al., 1985; Cerny & Ercit, 1985, 1989; Fuente and Izard, 1998; Fuente et al. 2000; Robles et al., 1999; Bekasmi et al., 2000; Aurisicchio *et al.*, 2001).

Africa is an important resource centre for tin, tantalum and niobium and their mineralization occurs in various countries across the African continent. However, their exploitation is restricted to a few countries. The African countries having a history of tantalum minerals include Namibia, Ethiopia, Mozambique, Uganda, South Africa, and Zimbabwe where alluvial and eluvial deposits are being mined using small-scale techniques.

Based on the regional geological reconnaissance work carried out by the author in an area of about 3000 sq km, some potential areas were identified (Singh, 2007a) and subsequently detailed surface and subsurface exploration works were undertaken for the purpose of geological mapping, surface sampling, trenching, pitting, drilling and bulk sampling (Singh, 2007b, c). Studies carried out by Singh (2007a,b, c) indicate that the pegmatites in this region are LCT type of Cerny's classification given in 1991 but in places they show mixed features between LCT and NYF pegmatites.

The aim of this paper is to present the reconnaissance geological work that has been carried out in about six sq km area of southern Uis region which is a part of Erongo region of Magisterial district Omaruru, Namibia (Fig. 1). This area is included in the Uis-Cape Cross rare element pegmatite belt (GSN, 2000) and has given positive anomalous values in tin (79 ppm of SnO₂), tantalum (0.45 wt. % of Ta₂O₅) and niobium (0.20 wt. % of Nb₂O₅) in previous geological reconnaissances as it is pointed out by Singh (2007a). Taking into account these facts, this study was focussed on the study of pegmatite bodies of this area for assessing the potential occurrences of tin, tantalum and niobium.

Figure 1. Map of Namibia showing Uis, the area under investigation.

Geological Setting

The younger sediments of the Kalahari and Namib deserts cover nearly half of the Republic of Namibia. Nevertheless, the varied geology of this country encompasses rocks spanning from the Archean to the Phanerozoic age and covers more than 2600 Ma of the earth's history. The metamorphic inliers that consist of highly deformed gneisses, amphibolites, meta-sediments and associated intrusive rocks occur in the central and northern parts of the country, and represent some of the oldest rocks of Paleoproterozoic age (2200 to 1800 Ma) in Namibia (Geological Survey of Namibia, 2000).

In the Southern Uis region, meta-sedimentaries, belonging to the Amis River Formation, Swakop Group of 1000-545 Ma (GSN, 2000) crop out. They are the oldest rocks occurring in the area and include quartzite, phyllite, quartz-schist, quartz-mica-schist and mica-schist. They strike in NE-SW to N-S direction and dip towards the south to southeast. Extensive erosion has taken place at regional scale but the resistant rocks can be seen as ridges and hills in the area.

These meta-sedimentaries are intruded by granites and granite gneisses. The intrusive rocks include mainly quartz and alkali-feldspar while tourmaline occurs as an accessory. These intrusive granites and granite-gneisses, normally trend in the strike direction of the meta-sedimentaries. The alkali feldspars in the granite gneiss are medium to coarse grained. At the contact of the intrusive granite with the sedimentaries extensive feldspathization can be observed. The granites, granite-gneisses and meta-sedimentaries have further been intruded by younger pegmatites and aplites, thereby constituting an integral component of the geo-tectonic setting of the area. These pegmatites also trend parallel to the strike of the meta-sedimentaries while in some places they cut across in the form of veins. These veins vary in width from a few metres to sometimes more than 25 metres. However, they do not show noticeable internal zoning. They contain several minerals formed by rare elements in addition to minerals such as quartz, microcline, albite, and muscovite. The accessory minerals include cassiterite, members of columbite-tantalite series of minerals and, in places, zircon and lithium minerals like amblygonite. The rare element pegmatites of the Uis-Cape Cross pegmatite belt were emplaced between 550 and 460 Ma (GSN, 2000). They are considered to be a major source of tin in Namibia. Figure 2 shows the geological map of the investigated area.

Dolerite dykes also occur as intrusive rocks cutting across the formation and intruding all the older rocks. At few places they form ring like structure called 'ring dykes' (Singh, 2007a).

Figure 2. Geological map of southern part of Uis, Namibia.

Method of study

The geological traverses were taken in such a way that the entire area was covered and all the outcrop exposures were studied more specifically. A grid of 100 x 100 m was followed in and around the main pegmatite body of the area which falls in the central portion of the investigated area, while at the peripheral part the samples were collected from the exposed quartz bodies as well as from the eluvials rich in quartz fragments. While collecting the samples within the grid, we took both the exposed rock samples as well as the eluvial samples with quartz fragments. In total 153 samples were collected from the area and were subjected to the analysis for their tin, tantalum and niobium contents. Rock samples were collected from the major exposed quartz-pegmatite bodies and sample locations and were located using a GPS. Figure 3a shows the sample locations of all the 153 samples collected in the present investigation.

The approximate size of the rock samples was about 20 x 20 x 10 cm while about 5 kg of eluvial samples were collected. The collected samples were processed (split, crushed and pulverized) at the 'Analytical Laboratory Service', Windhoek, Namibia and were subsequently analyzed for their tin, tantalum and niobium contents in the Research and Development Centre of NMDC, Ltd., Hyderabad, India, in ICP-MS (Perkin Elmer).

Figure 3. Map showing location of samples in the southern Uis region, Namibia (a) and location of samples (b) with assay values in potential block.

Results and discussions

While carrying out the geological traverses, special attention was focussed on the study of the pegmatite bodies for assessing the potential occurrences of tin, tantalum and niobium. Out of the 153 samples analysed, one gave a value of tin (SnO_2) higher than 3000 ppm, ten between 2000 and 3000 ppm and three between 1000 and 2000 ppm. The rest of the samples showed a tin content of below 1000 ppm. These values reveal their richness due to mineralization. As far as niobium concentra-

Figure 4. Scatter plot of concentrations of Ta₂O₅ and Nb₂O₅.

Figure 5. Scatter plot of concentrations of SnO_2 and $Ta_2O_5 + Nb_2O_3$.

Table I. Details of the samples and their corresponding SnO2, Nb2O5 and Ta2O5 contents. ND-not determinable due to low concentration.

S.No	Sample	Nature of Sample	SnO2	Ta2O5	Nb2O5	77	77	Quartzo-feldspathic rock sample	ND	4	114
	No					78	78	Quartzo-feldspathic rock sample	ND	82	67
			(ppm)	(ppm)	(ppm)	79	79	Quartzo-feldspathic rock sample	ND	29	133
1	1	White quartz with black specks	ND	23	37	80	80	Quartzo-feldspathic rock sample	ND	27	46
2	2	Eluvial sample	ND	23	252	82	82	Quartzo-feldspathic rock sample	ND	195	62
3	3	Eluvial sample	ND	23	252	83	83	Quartz sample with black specks	ND	20	43
4	4	Eluvial sample	ND	23	33	84	84	Quartz sample with black specks	ND	24	44
5	- 4	Eluvial sample		23	110	85	85	Quartz sample with black specks	ND	9	47
5	5	Eluvial sample (quartz fragments dominate)	ND	23	119	86	86	Quartz sample with black specks	ND	18	39
6	6			22	24	88	88	Quartz sample	ND	20	39
6	6	Eluvial sample	ND	23	34	89	89	Quartz sample	ND	21	39
	/	Eluvial sample	2123	23	53	90	90	Quartzo-feldspathic rock sample	ND	9	176
8	8	Eluvial sample	3006	23	54	91	91	Eluvial sample	ND	21	39
9	9	Eluvial sample (quartz fragmente dominate)	2344	23	283	92	92	Quartzo-feldspathic rock sample	ND	21	39
		Eluvial sample (qualiz hagments dominate)				93	93	Quartz sample	ND	22	39
10	10	El miel e servele	2515	23	34	94	94	Quartz sample	ND	85	39
11	11	Eluvial sample	2502	23	102	95	95	Quartz sample	ND	22	39
		Eluvial sample (quartz fragments dominate)				96	96	Quartz sample	ND	21	39
12	12		2165	23	209	97	97	Quartzo-feldspathic rock sample	ND	21	24
13	13	Stream bed sediment	2542	23	250	98	98	Quartz sample	ND	10	39
14	14	Eluvial sample	2850	23	89	99	100	Eluvial sample	ND	10	43
15	15	Eluvial sample	2227	23	282	100	100	Eluvial sample	ND	12	41
16	16	Eluvial sample	2186	23	74	101	101	Eluvial sample	ND	5	289
17	17		2730	23	142	102	102	Quartza foldanathia rack comple	ND	12	102
18	18	Eluvial sample	ND	23	242	103	103	Quartzo-feldspathic rock sample	ND	20	39
19	19	Eluvial sample	ND	23	253	104	105	Quartzo-feldspathic rock sample	ND	22	39
20	20	Eluvial sample	ND	23	46	106	106	Eluvial sample	ND	24	172
21	21	Eluvial sample	ND	23	217	107	107	Quartz sample	ND	20	39
22	22	Eluvial sample	ND	23	112	108	108	Quartz sample	ND	22	39
23	23	Eluvial sample	ND	ND	298	109	109	Quartz sample	ND	21	39
24	24	Eluvial sample	ND	ND	269	110	110	Quartzo-feldspathic rock sample	ND	22	36
25	25	Stream bed sediment	1526	ND	166	111	111	Stream bed sediment	ND	22	39
26	26	Eluvial sample	580	ND	355	112	112	Ouartz sample	ND	20	282
27	27	Eluvial sample(near stream bed)	1224	7	146	113	114	Quartzo-feldspathic rock sample	ND	20	37
28	28	Eluvial sample	1233	9	146	115	115	Quartzo-feldspathic rock sample	ND	22	39
29	29	Eluvial sample	ND	22	29	116	116	Quartzo-feldspathic rock sample	ND	57	39
30	30	Eluvial sample	ND		359	117	117	Quartz sample	ND	18	39
21	21	Eluvial sample		ND	200	118	118	Stream bed sediment	ND	12	39
32	32	Stream bed sediment	ND	82	495	119	119	Eluvial sample	ND	17	40
33	33	Eluvial sample	ND	2	193	120	120			17	- 55
34	34	Eluvial sample(near stream bed)	ND	2	262	121	121	Quartzo-feldspathic rock sample	ND	17	39
35	35	Eluvial sample	ND	ND	336	122	122	Quartz sample	ND	16	39
36	36	Eluvial sample	ND	ND 442	405	123	123	Quartz sample	ND	18	39
37	37	Eluvial sample	ND	ND	185	124	124	Quartz sample	ND	1/	39
39	39	Eluvial sample	ND	ND	272	125	125	Quartz sample	ND	16	39
40	40	Eluvial sample	ND	ND	518	127	127	Eluvial sample	ND	16	39
41	41	Eluvial sample	ND	ND	582	128	128	Quartzo-feldspathic rock sample	ND	57	176
42	42	Eluvial sample	ND	ND	718	129	129	Quartzo-feldspathic rock sample	ND	31	34
43	43	Stream bed sediment	ND	ND	250	130	130	Quartzo-feldspathic rock sample	ND	32	33
44	44	Eluvial sample		ND	192	131	131	Quartzo-feldspathic rock sample	ND	27	37
46	46	Eluvial sample	ND	ND	266	132	132	Quartz sample	ND	26	39
47	47	Eluvial sample	ND	ND	378	133	134	Quartzo-feldspathic rock sample	ND	24	40
48	48	Eluvial sample	ND	ND	315	135	135	Eluvial sample	ND	20	69
49	49	Eluvial sample (Near stream bed)	ND	4	139	136	136	Quartzo-feldspathic rock sample	ND	20	26
50	50	Eluvial sample	ND	2	140	137	137	Quartzo-feldspathic rock sample	ND	126	33
52	52	Eluvial sample	ND	ND	494	138	138	Quartzo-feldspathic rock sample	ND	33	29
53	53	Eluvial sample	ND	ND	588	139	139	Quartz sample	ND	22	27
54	54	Eluvial sample	ND	4	94	140	140	Quartz sample	ND	23	39
55	55	Eluvial sample	ND	4	202	141	141	Quartz sample	ND	24	39
56	56	Eluvial sample	ND	ND	316	143	143	Quartz sample	ND	24	36
57	5/	Eluvial sample			192	144	144	Quartz sample	ND	24	39
59	59	Eluvial sample	ND	ND	448	145	145	Eluvial sample	ND	23	136
60	60	Eluvial sample	ND	ND	246	146	146	Quartzo-feldspathic rock sample	ND	103	36
61	61	Eluvial sample	ND	ND	511	147	147	Quartzo-feldspathic rock sample	ND	28	ND
62	62	Eluvial sample	244	53	363	148	148	Quartzo-teldspathic rock sample	ND	18	30
63	63	Eluvial sample	ND	2	139	149	149			20	34
65	65	Eluvial sample	254	ND	299	151	151	Quartz sample	ND	63	37
66	66	Eluvial sample	ND	9	116	152	152	Eluvial sample	ND	23	47
67	67	Eluvial sample	ND	9	232	153	153	Quartzo-feldspathic rock sample	ND	22	40
68	68	Eluvial sample	ND	62	207						
69	69	Eluvial sample	ND	12	525	ND-not o	leterminal	ble due to low concentration			
70	70	Eluvial sample	ND	ND	522						
71	/1	Eluvial sample	ND	ND	339						
73	73	Quartzo-feldspathic rock sample	ND	12	39						
74	74	Eluvial sample	ND	1	209						
75	75	Eluvial sample	ND	ND	296						

tion is concerned, 58 samples have shown above 150 ppm of Nb₂O₅. However, the investigated area is almost devoid of tantalum and only one sample has shown above 150 ppm of Ta₂O₅. The details of the analysis showing concentrations of tin, niobium and tantalum is displayed in Table I. Figure 3b provides the assay values of sample along with their locations in the map within the potential block of the present study. From the analytical data it is evident that most of the better values where tin and niobium concentrations are high, are located in the central part of the investigated area. Moreover, the high values are concentrated in the eluvial samples, and the quartz samples from the exposed pegmatite quartz bodies do not reveal anomalous values. The scatter plot (Fig. 4) for concentrations of Ta2O5 and Nb2O5 in this area shows a poor correlation coefficient ($\mathbf{R} = -0.006$). However, the scatter plot (Fig. 5) between SnO₂ versus $Ta_2O_5 + Nb_2O_5$ reveals that with the increase in the concentration of Sn, there is concomitant decrease in the concentration of Nb + Ta and vice versa.

Conclusions

A total of 14 samples out of 153, have given a positive anomalous value of SnO_2 while 58 samples have shown above 150 ppm of Nb_2O_5 . However, the investigated area is devoid of tantalum and only one sample has shown above 150 ppm of Ta_2O_5 . The analysis reveals that both tin and niobium are located in the central part of the investigated area which covers about 0.64 sq km. Considering the mineralization in this part of the region, an area of around $800 \ge 800$ m (~ 0.64 sq km) may be considered ideal for manual quarrying or shallow mining of the eluvials by the small groups of miners in the area, as shown in Figure 3a and b.

Acknowledgements

The author is highly indebted to NMDC (National Mineral Development Corporation, India) for providing him the opportunity for this exploration work in Namibia while working with NMDC. The author extends his gratitude to NIMDC (Nam India Mineral Development Corporation), Windhoek, Namibia for providing the necessary facilities. The author also wishes to put on record the help rendered by High Commissioner of India in Namibia, various Ministries and Departments of Government of Namibia, local administrative and technical authorities of Uis, Namibia.

The author visited the tantalite pegmatite belt of Uis, Namibia twice to accomplish the exploration activity and was accompanied by Shri V.K. Verma, Shri S.N. Siddiquie and Dr. A. Tripathi of NMDC and Dr. Tim Smalley of CAMEC (Central African Mining and Exploration Company), Namibia. Nevertheless, the views expressed in the present paper are exclusively of the author and do not necessarily match with those of NMDC. The author is thankful to Dr. M. Fuertes-Fuente and an anonymous reviewer for critically reviewing the manuscript and to Dr. Josep Poblet, editor of this journal, for giving good suggestions to improve the contents of the manuscript.

References

AURISICCHIO, C, DE VITO, C, FERRINI, V AND ORLANDI, P. (2001): Nb-Ta minerals from miarolitic pegmatites of the Baveno pink granite, NW Italy. *Mineralogical Magazine*, 65(4): 509-522.

BELKASMI, M, CUNEY, M, POLLARD, P. J. AND BASTOUL, A. (2000): Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparision with Moroccan and French Hercynian examples. *Mineral mag.*, 64: 507-23.

CERNY, P. (1991): Rare element granitic pegmatites. Part-I: Anatomy and internal evolution of pegmatite deposits. Part II: Regional to Global environments and Petrogenesis. *Geoscience*, 18(2): 49-67.

CERNY, P. AND ERCIT, T. S. (1985): Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare element granitic pematites. *Bull. Mineral.*, 108: 499-532. CERNY, P. AND ERCIT, T. S. (1989): Mineralogy of Niobium and Tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. Lanthanides, Tantalum and Niobium. Springer-Verlag, Berlin and Heidelberg: 27-79.

CERNY, P., MEINTZER, R. E. AND ANDERSON, A. J. (1985): Extreme fractionation in rare- element granitic pegmatites: selected examples of data and mechanism. *Canad. Minerals*, 23: 381-421.

FUERTES-FUENTE, M. AND MARTIN IZARD, A. (1998): The Forcarei Sur rare-element granitic pegmatite field and associated mineralization, Galicia, Spain. Canadian Mineralogist, 36(2): 303-325

FUERTES-FUENTE, M., MARTIN IZARD, A., BOIRON, M.C. AND MANGAS, J. (2000): Fluid evolution of rare-element granitic and Muscovite granitic pegmatites from Central Galicia, NW Spain. *Mineralium Deposita*, 135(4): 332-346.

GEOLOGICAL SURVEY OF NAMIBIA (2000): The Geology of Namibia. Ministry of Mines and Energy (www.gsn.gov.na) ROBLES, E. R., PEREZ, A. P., ROLDAN, F.V. AND FONTAN, F. (1999): The granitic pegmatites of the Fregeneda area (Salamanca, Spain), characteristics and petrogenesis. *Mineral. Mag.*, 63: 535-58.

SINGH, P. K. (2007a): Results of tantalite exploration in Uis, Namibia. *Indian Geological Congress*, 2(1): 3-12.

SINGH, P. K. (2007b): Evaluation of tantalite mineralization through surface and sub-surface exploration: A case study in Block-D, Uis, Namibia. *Indian Journal of Geochemistry*, 22 (2) : 385-412.

SINGH, P. K. (2007c): Tantalite exploration in 'Block-A' of Uis region, Namibia, *Trabajos de geologia*, Univ. de Oviedo, 27:41-69.