
Lyapunov method: a tool to describe fabric attractor
in non-linear and heterogeneous flows with

application to shear zones

Abstract: In this contribution we review and expand the concept of attractor to non-linear flow sys-
tem, introducing the concept of stability analysis to unravel some simple heterogeneous flow system.
A semi-quantitative tool (using Lyapunov method) is suggested to predict the fabric attractor within
some simple and general shear zones defined by non-linear flow tensor. The theory is briefly explained
and it is shown the potentiality of this approach on describing the flow in heterogeneous shear zones.
An example is discussed and a kinematic classification of some possible non-linear flow systems, using
Lyapunov exponent analysis, is proposed. 
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Deformation is generally treated as homogeneous and
steady state (i.e. the kinematics of the flow at a given
material particle is not varying with time and space)
because the mathematical description becomes too
complex otherwise. However, several field, experiment
and theoretical oriented works showed that strain rate,
as well as rheological properties of rocks, generally
change during the deformation history. This implies
that the deformation could vary non-linearly along
space and with time (Fossen and Tikoff, 1997; Jiang
and Williams, 1999; Trepmann and Stockhert, 2003).
Non-linear flow implies that the principal asymptoti-
cally stable directions of flow, that behave as attractor
or repulsor (Ruelle, 1981; Tabor, 1989), are expected
to control the final orientations of the principal strain
axes as well as the final fabric distribution, that could
vary in time and in space. Heterogeneous deformation
represents a classical example of autonomous non-lin-
ear system as it implies that the strain varies following
a non-linear function (Ramsay, 1980), e.g. showing a

vorticity or strain gradient along a specific direction
(Jiang and Williams, 1999). Solutions of differential
equations describing non-linear autonomous system
are not obvious and if exist are not deterministic.
These non-linear properties strongly limit any attempt
to reconstruct the flow history in a unique way as dif-
ferent kinematics histories could produce the same
results. As a consequence, geological structures cannot
be generally described in terms of unique flow pattern.
The aim of this extended abstract is to contribute to
the knowledge of the possible flow pattern and related
structures produced in some non-linear flow in order
to understand or predict similarly to the linear case if
some fabric attractors (McKenzie, 1979; Passchier,
1997) could be expected. With this purpose, we intro-
duce the concept of stability analysis (using Lyapunov
method) as a criterion to describe the flow pattern
where the flow path cannot be derived by simple inte-
gration, and we discuss the properties of some non-lin-
ear flow that could be analysed with this method.
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Method

Dynamical systems are often described in terms of
differential equations. To determine the behaviour for
longer periods it is necessary to integrate the differen-
tial equations, either through analytical means or
through iteration, often with the aid of computers. If
the dynamical system is a continuous time system it is
called flow system. The classical differential equations
defined by the flow tensor matrix Lij, and used in
strain analysis to describe flow rocks, are expressed as:

X = Lij X (1).

To solve equation (1), the system needs to be integrat-
ed and the obtained integrated function must be
inverted. These two conditions are not obvious or
straightforward even in simple one dimensional case.
Its solution defines the flow path equation necessary
to obtain the displacement path and the finite strain
ellispe. If the tensor Lij is defined by a constant
parameter, the flow tensor defines a linear dynamical
system. If Lij is defined by a non-constant parameter
as linear and non-linear function F(x), the solution is
not always easy to unravel and does not necessarily
exist (Tabor, 1989). If Lij is time dependent the flow
is non-steady. The main point we wish to stress is
that, sometimes, it is possible to estimate in a qualita-
tive way the properties of the solutions and their
behaviour for t→∞ , understanding if the differential
equations bear an attractor or not, without solving the
non-linear differential equation, and by simply study-
ing the properties of functions that approximate the
flow tensor. Some of these functions are the Lyapunov
functions (Tabor, 1989). Depending on the proper-
ties of the non-linear system, different methods of
constructing Lyapunov functions need to be applied.
Hereafter, we will briefly describe what the Lyapunov
functions are and how to build a Lyapunov function
ad hoc for a non-linear flow system.

Construction of Lyapunov function for non-linear systems

Lyapunov functions are by definition functions which
prove the stability of a fixed point in dynamical sys-
tem or non-linear autonomous differential equations.
In 3D, a fixed point X is a point for which:

X = Lij X = 0 (2).

Stability defined by a fixed point corresponds nicely
with the intuitive notion (not rigorous, but this is not
the point here) that a fixed point is stable when a start-
ing condition close to the fixed point remains close for

all time. The notion of asymptotic stability is a little
stronger than stability concept and holds for a fixed
point when nearby conditions not only remain close
for all time but actually move toward the fixed point
approaching it asymptotically. This corresponds to the
concept of attractors used in linear differential equa-
tions (Tabor, 1989) and rock flow analysis (Passchier,
1997). Given the previous stability concept, a pratical
definition of Lyapunov function could be done as fol-
lows. Let be x an isolated fixed point of the system (2)
and located in some open set D in the phase space A
of (2). Then, V(x), a differential function mapping
from the phase space A to the real line R is a Lyapunov
function if it has the following properties: a) V(x) ≥ 0
∀ x ⋳ D; b) V(x) = 0 ↔ x = x’; and c) the derivative of
V(x) with respect to t along a solution curves is non
positive for all t, i.e. dV(x(t))/dt < 0.

If a Lyapunov function V(x) exists, then x’ is stable. If
the x’ is the only point in D for which dV(x)/dt = 0,
then x is asymptotically stable. In a few words, the
procedure states that if we have some functions V(x),
defined over the phase plane near the fixed point we
are interested in, then we need picking an initial con-
dition and let the dynamic system defined in equation
(1) evolve moving around on the surface described by
this function. Suppose this function has only one
minimum, located at the fixed point x. If we start at
some initial condition near x we will observe a trajec-
tory on the surface of our function. If that trajectory
leads to decreasing value of V(x) then we know that
we must approach the minimum of V(x), i.e. the fixed
point. The existence of V(x) with all its stated proper-
ties guarantees the stability of x. The main limit of
this approach is that there is not a general method to
construct a Lyapunov function and the inability to
find a Lyapunov function is inconclusive with respect
to stability. The theorem merely tells us what happen
if we can construct one. On the other hand, the
Lyapunov function is never unique as we can readily
imagine multiplying or adding a costant to V(x) with-
out changing the essence if the properties noted
above. Let’s show and example with a simple hetero-
geneous flow tensor. Consider the non linear flow
tensor defined in this way:

(3).

This differential equation represents a flow tensor
having a gradient along the pure shear direction
inducing a heterogeneous deformation. This function
f(x,y), that defines the gradient, could describe both
dilatant as well as constant area flow. Angular veloci-
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ties are fixed. In this case, to unravel the strain rate
tensor and the vorticity tensor it is necessary to apply
the relation: 

Lij = ½(Lij + Lji) + ½(Lij – Lji) (4).

The first term defines the strain rate tensor, the sec-
ond one defines the angular velocity tensor
(McKenzie, 1979). This flow tensor has a solution in
(0,0). However, its solution depends on the values of
the dissipative terms f(x,y) and the myriad possible
solutions could not always be unravelled by simple
integration. So let’s define a Lyapunov function L to
determine the stability of the equilibrium solution in
(0,0).

Let be L=x2+y2, we have ∂L/∂t=2xx(t)+2yy(t), from
equation (3) we obtain:

(5).

1) If f(x,y) is positive semidefinite (does mean f(0,0)
= 0 and f(x,y) ≥ 0 for x,y ≠ 0) then ∂L/∂t ≤ 0 so the
flow path is uniformily stable and have an attractor.

2) If f(x,y) is positive definite (does mean f(0,0) = 0
and f(x,y) > 0 for x,y ≠ 0) then ∂L/∂t < 0. It means
that whatever is the displacement path, the flow is
asymptotically stable and after large strain accumula-
tion it develops a stable attractor. In this case, the ori-
entation of the finite strain ellispoid is controlled by
an attractor.

3) If f(x,y) is negative definite (does mean f(0,0) = 0
and f(x,y) > 0 for x,y ≠ 0 ) then ∂L/∂t > 0. It means
that whatever is the displacement path, the flow is
unstable, exploding for large strain accumulation. In
this case, the dilatant system is highly dissipative and
no stable attractor is expected. 

Summarizing, using the Lyapunov function, a simple
planar heterogeneous tensor has been analysed and
the properties of the gradient functions to obtain final
fabric attractors has been described. To obtain an het-
erogenous flow tensor with stable direction we have to
define some reasonable gradient function f(x,y) posi-
tively definite.

Lyapunov exponent: indirect method to test asymptotic
behaviour

If a Lyapunov function cannot be constructed, an
alternative method to test the possible existence of

a fabric attractor and to understand what kind of
attractor it should be expected is the indirect
Lyapunov method, the one numerically developed
by Wolf et al. (1985). The Lyapunov method is
classically used as a tool to unravel possible chaot-
ic motion but could be introduced as well to
describe trajectory of ordinary differential equa-
tions and to test their behaviour for t→∞ without
finding a complete solution of the system.
Basically, this method gives a qualitative degree of
divergence of orbits or deformation path in non-
linear dynamical system from their principal
eigenflows by finding and studying the Lyapunov
exponent. Hereafter, a brief analytic description of
the method will be proposed to test if the non-lin-
ear function could have a fixed attractor or stable
direction.

Let have a one-dimensional system defined by:

x = f (x) (6).

Suppose we have two starting conditions, xa and xb,
then the trajectories deriving from such two initial
conditions are: xa= f (xa)  the first trajectory, and
xb= f (xb) the second trajectory.

(7),

is the difference between these two trajectories.

Equation (7) could be rewritten in a more operative
way as follows:

(8).

Here, it has been assumed that d is small (infinitesi-
mal) and f(xb) could be expanded into a Taylor series.

Assuming that f ’(xa) is approximately constant, we have
that the distance changes exponentially in this way:

(9),

where d0 is the initial distance between the trajectory
and t0 is the initial moment of time. Rewriting equa-
tion (9) we have:

(10).
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If the system is linear, λ is constant and if it does not
depend on the initial condition, d has to be zero
because the two trajectory in equation (8) show the
same path.

For non-linear and non-autonomous system, λ is not
constant and this implies that equation (10) has to be
defined as a mean divergence of the two trajectories at
large t, finding the divergence values as a limit for t
going to infinity.

The limit is:

(11),

and λ is called Lyapunov exponent. In a non-linear
system, the gradient of the function could change
throughout the all trajectory being time dependent.
As a consequence, it is necessary to find an averaged
Lyapunov exponent of the whole trajectory. In prac-
tice, the Lyapunov exponent should be redefined in
this way:

(12).

As showed graphically in figure 1, computing the dif-
ferent trajectories (thinnest line in figure 1) at differ-
ent initial point (if time dependent), the method con-
sists on describing how much such trajectory comput-
ed at different point could diverge from a reference
trajectory (thickest black curved line in figure 1) ini-
tially chosen. In this context, the reference trajectory
could be a numerically calculated eigenflow. For an n-
dimensional continuous system, the function f ’ has to
be replaced by the Jacobian matrix J = Grad f. 

Doing the same reasoning made in equations (6-10),
the n Lyapunov exponent calculated along the eigen-
vectors of an n-dimensional dynamic system could be
syntethically described in this way: 

(13),

being μi the eigenvalues of the jacobian matrix. The
set of λi forms the Lyapunov spectrum.

Now, applying such method to a 3D flow system,
where the Jacobian matrix could represent the

strain rate matrix, time dependent or a non-linear-
ly time independent matrix, three Lyapunov expo-
nent λi (λ1, λ2, λ3) are expected. Intuitively assum-
ing the initial starting point at time t0 as a sphere
field (assuming the Lyapunov at this point as zero
values) if the Lyapunov exponent calculated at dif-
ferent point and time ti on the reference function
is not zero, but there exist almost one positive
value, the initial sphere become deformed as an
ellipsoid (Fig. 2) an the principal axes of such
ellipsoid defines the biggest Lyapunov exponent.
Equation (13) indicates a strict relation between
the Lyapunov exponent and the eigenvalues of the
dynamical system, and states that by a simple cal-
culation of the eigenvalues at different time ti, it
could be understood if the non-linear component
of the system behave chaotically or not. 

Pratical plan to finding Lyapunov exponent 

a) Assuming that we have a system x = f (x), find the
basic trajectory. To do that, we should integrate
numerically the system for a sufficiently long period
of time. b) Then we find the Jacobian J of our system
η=Jη. c) Fix the initial deviation from the trajectory at
some values. d) Integrate the jacobian during a time
t=tk-t k-1.e) 

Find the divergence: d . f ) Start the

next time step in the direction s
d            and

go to step c) until the end of trajectory. g) Finally, find
the Lyapunov exponent using equation (13). See Wolf
et al. (1985) for a detailed description of the method
proposed here.

Result: qualitative description of asymptotic solution

Flow tensor can reasonably describe strain distribution
within shear zones (Ramberg, 1975; McKenzie, 1979),
and as finite strain ellipsoid is controlled by the attractors
of the flow tensor, then for large strain accumulation,
fabric distribution could be reasonably predicted by
mean of a stability analysis (Passchier, 1997). This
implies that if we can find Lyapunov function to describe
stability and asymptotic behaviour of non-linear flow
tensor, then we can predict the asymptotic behaviour of
strain distribution within high strain heterogeneous
shear zones defined by non linear flow tensor, without
the necessity of solving the flow equation. An example
has been described and discussed. Moreover, using
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Lyapunov exponent analysis some end member solution
could be expected for general non linear flow system:

a) If the system is dissipative, implying a volume con-
tracting (Tr Jij < 0), the sum of the three Lyapunov
exponent is negative, implying that at least one of the
λi is negative. If the biggest eigenvalues (as norm cal-
culated) is negative, it should be expected that for
t→∞ the dynamic system is controlled by a stable
attractor. The same should be expected if the system
is a conservative system (isochoric flow Tr Jij = 0).

b) If the biggest Lyapunov exponent λ1 is positive, the
system is chaotic. If not, the following possibilities are
expected: i) if λ1 = 0 and λ2 > λ3 < 0 we have a limit
cycle; and ii) if λ1 = λ2 = 0, > λ3 < 0 we have a torus.

If the system is characterized by an expanding volume
change (as an expanding shear zone), theory says that
the attractor expected should be chaotic and not fixed
or asymptotically stable (Fig. 3). 

Applying these concepts to heterogeneous high-
strain shear zones, if the heterogeneous shear zone

is a confined and/or non-linearly contracting shear
zone, a stable attractor should be expected after a
large accumulation of strain (Fig. 4). If the shear
zone is dilatant, a possible chaotic behaviour
should be expected. This last consideration seems
to be in conflict with the fact that chaotic fabric
distribution has been rarely described in dilatant
high-strain shear zones intruded by partial melt-
ing. However, to better understand the effective
validity of these end members within real physical
system a test involving mechanical parameters
should be performed in the next future.

Conclusion

With this contribution we describe a semiquanti-
tative tool using Lyapunov functions, which can
be used to predict fabric distribution within het-
erogeneous shear zones without being forced to
solve complex analytical differential equations.
We discussed a simple class of non-linear flow
tensor. Finally we described the possible flow
path expected within simple heterogenous planar
shear zones.

Figure 1. Lyapunov exponent of
a trajectory. The thickest line
with no arrow, defines the princi-
pal trajectory chosen. The
thinnest lines with arrows define
the computed different trajecto-
ries starting from different points

Figure 2. Example of 3D chaotic
function (thickest black line).
The small sphere indicates the
initial conditions at ti. The differ-
ent ellipses indicate the rate of
divergence expected for different
trajectories starting at different
points along the function. The
principal axes of each ellipse
define the three Lyapunov expo-
nents. In this case, the biggest
Lyapunov exponent is positive
and indicates a divergent chaotic
flow pattern.
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Figure 3. Expanding dilatant
shear zone. Black arrows show the
expected deformation paths.
Gray surfaces define the bound-
ary walls and the ellipses the dif-
ferent averaged Lyapunov
ellipses.

Figure 4. Conservative shear zone
with non-linear but stable defor-
mation path (black arrows). Gray
surfaces define the boundary walls
and the ellipses the different
Lyapunov ellipses.
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