
Limits and biases on the three-dimensional vorticity
analysis using porphyroblast system: a discussion and

application to natural example

Abstract: A description on the systematic errors associated with the measurement of the vorticity num-
bers is presented and an application to a real example is discussed. We show that strong biases and sys-
tematic errors derive both from some physical assumptions (Jeffery or Mulchrone model) rarely
encountered by natural systems as well as by the fact that these vorticity techniques require measure-
ments of the geometrical parameters of porphyroblasts-matrix system by using outcrop surfaces or thin
section methods that are inherently biased. Applying different vorticity plots we analyse an example
and discuss in detail the effective systematic errors distribution and the ambiguity in measuring the
mean vorticity numbers Wn.
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Three main analytical techniques (Passchier, 1987;
Wallis, 1995; Holcombe and Little, 2001) using
rigid porphyroclast to estimate Wn, and based on
the theory proposed by Jeffery (1922), are common-
ly employed to characterize flow within shear zones
in a variety of tectonic settings (see Jessup et al.,
2007 and reference therein). All these techniques
rely on a fundamental relationship between Wm
(main vorticity number), the shape factor R and the
angle of porphyroclast long axis with respect to the
foliation or stretching direction to define a threshold
number Rc below which they continuously rotate
and above which they record a stable sink position.
However, the great majority of these vorticity analy-
ses performed within shear zones totally ignored the
real systematic errors biases linked to such measure-
ments, often assuming the vorticity numbers
obtained were not affected by measurement errors.
This could give rise to results without a clear physi-
cal and geological validity. To our concern, this main

limit is primary due to the fact that few detailed
analysis of the effective sources of these errors and
few self critical discussion on the limit of the meas-
urement techniques employed has been tempted so
far (Forte and Bailey, 2007; Mulchrone, 2007b;
Iacopini et al., 2008). Moreover, all these techniques
are derived from the Jeffery solution that assumes
the rigid porphyroclast is immersed in Newtonian
fluid with no slip at the boundary. This physical
assumption has been adopted as a priori condition
but needs to be proved or tested. This now become
partly possible thanks to Mulchrone (2007a), who
published a series of plot showing the relationship
between mean kinematics vorticity number Wm, the
shape factor R and the angle η.

In this contribution, we show theoretically and by
mean of a natural example, that both in the recogni-
tion of the vorticity vectors orientation and in the
measurement of the porphyroclast aspect ratio, two
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main systematic errors have to be encountered, espe-
cially if the strain intensity registered by the deformed
rocks is not very high. Finally, within the data set
obtained from vorticity analysis, we perform a best fit
using both the Passchier and Mulchrone curves and
try to investigate if the porphyroclast behaved perfect-
ly coupled with the matrix during the deformation
events. 

Systematic source errors

The kinematic vorticity number Wk has its origin in
fluid dynamics and records the amount of rotation
relative to the amount of stretching at a point in space
and in an instant in time. It has been introduced into
geological literature because it represents basic flow
parameters able to describe flow kinematics, e.g. to
distinguish between pure and simple shear within
shear zones. Assuming a steady state deformation, its
application into geology has been facilitated by the
use of Mohr circle strain that permits to efficiently
correlate Wk to the velocity gradient tensor and the
deformation matrix. To estimate Wk, several methods
called vorticity gauges, based on different microstruc-
tures have been proposed and are currently under
development. The method we will re-analyse is based
on rotational behaviour of a rigid object within non-
coaxial flow.

One method is the technique proposed by Passchier
(1987), and based on the following relation: 

(1),

where the angle η between the maximum axis of an
irrotational rigid object in the XZ finite plane and the
extensional eigenvector (materialized by the straight
domain of the tails) is a function of Wk and the crit-
ical aspect ratio R* (B* in Passchier, 1987). 

Another technique is the one proposed by Holcombe
and Little (2001) based on the following relationship:

(2),

where R is the aspect ratio, while γ and ε are the far
field bulk simple shear and the pure shear respectively.

Both methods use the geometry, aspect ratio of man-
tled porphyroclasts as well as the inclusion trails

geometry of porphyroblasts to determine the amount
of vorticity. In practice, the methods consist of com-
piling diagrams showing the orientation of the long
axis of porphyroblasts vs. the recrystallized tails direc-
tion (eq. 1) or vs. the orientation of the internal foli-
ation (eq. 2). Both of them are measured in thin sec-
tion, cut parallel to the stretching lineation and
orthogonally to the main foliation. These data are
then compared to theoretical curves obtained using
equations (1) and (2). From the two equations at least
two source errors could be recognized:

1) Source error due to the fact that the sectional radii
of a porphyroclast measured in thin section misrepre-
sent the true maximum sectional vorticity plane
(orthogonal to the vorticity vector) as well as the true
porphyroclast radii in a sample (Fig. 1). 

As predicted by the analytical solution (Passchier,
1987; Mulchrone, 2007a) this effect is mainly due to
the fact that porphyroclast axes during the shearing
show also a revolutional movement and, as a conse-
quence, the porphyroclasts are always slightly disori-
ented with respect to the mean stretching direction
assumed as a reference direction. As a result, vorticity
analysis is performed in sections that are not always
perfectly orthogonal to the vorticity vector of the por-
phyroclast system. As showed in figure 1, apparent
inclusion trail profiles and aspect ratios are obtained
from non-central sections and this implies that in

Figure1. Diagram showing the effective radius measured along
different misoriented plane to the main sectional vorticity plane.
The porphyroclast is idealized as a biaxial ellipsoid. φ represents
the angle between the porphyroclast main axes and the sectional
cutting plane. Section with φ = 0 represents a plane orthogonal to
the main axis. Section with φ = 90 represents a plane parallel to
the main axes and measures the true main porphyroclasts axes.
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both methods a systematic error is introduced. For
example, assuming the porphyroclast is a biaxial ellip-
soid, figure 1 shows that if we cut the porphyroclast

with a misfit of 0-20º we can obtain an error of 0-0.4
in the estimation of the aspect ratio. The main effect
in estimating the vorticity values using Passchier plot
(Passchier, 1987) are shown in figures 2 and 3: it is
shown that we can expect an error of 0.2 in the esti-
mation of the vorticity errors (Fig. 2). If we know
independently the shear component and use a plot
Wm vs. γ, a similar error is expected again if we are
not exactly in the sectional vorticity plane (Fig. 3).
Figure 3 shows that for high shear strain components
(Wm~1) the curves become all closer each other
decreasing the effective error. In all cases, the more the
shear zones are affected by high shear strain, the more
the porphyroclasts are well oriented along the stretch-
ing direction and the lower the error expected.

2) A second systematic error derives from the fact that
the analyses are usually performed in two dimensions
(Tikoff and Fossen, 1995). In this case, there is always
an underestimation of the orthogonal possible
stretching direction effect. If such component is not
zero, it induces an overestimation of the real vorticity
number. This systematic error has been estimated by
Tikoff and Fossen (1995) to be at least 0.05 if sections
are perfectly orthogonal to the vorticity vector.

Other possible errors could derive from an underesti-
mation of the dilatancy effectively registered by the
shear zones. In this case, for high strain shear zones as

showed by figure 4 its effect is far more lower respect
the previous described source errors but could not
reasonably be neglected for low simple shear values.

Summarizing, if we are dealing with shear zones char-
acterized by general shear with vorticity numbers Wm
≤ 0.9-1.0, systematic errors should be taken into
account and a biases of, at least 0.2 or 0.3 could be
expected especially if porphyroclast are not perfectly
iso-oriented to the main stretching directions. This
implies that vorticity numbers strongly affected by
pure shear component, e.g. transpressive shear zones,
could not be well estimated and careful sampling as
well as knowledge of mis-fitting angle  are needed.

Consideration on the slipping effect

Another type of systematic error comes out from the
main physical assumptions of the various vorticity
analysis techniques taken into account in this contri-
bution: the rigid porphyroclasts-matrix interface does
not have any slipping component and the shear zones
are not confined. A posteriori, in the vast majority of
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Figure 2. Diagram showing the distribution of kinematic vorticity
as a function of simple shear component of flow calculated along
different planes with different orientations to the maximum sec-
tional vorticity plane. Black line indicates kinematic vorticity calcu-
lated along the maximum sectional vorticity plane. Gray lines indi-
cate kinematic vorticity for sectional planes respectively at 5, 10, 15,
20 and 25° from the maximum sectional vorticity plane.

Figure 3. Diagram showing how different aspect ratios could pro-
duce different vorticity plot curves with different critical vorticity
number Rc. η represents the orientation of the main rigid clast
axes with respect to the stretching direction. R is the aspect ratio
of the rigid clast. 



vorticity analyses, when we perform a kinematic
analysis of shear zones, the real effectiveness of these
two properties cannot be easily tested or demonstrat-
ed. If during the shearing event the interface behaved
with a slipping component, the Jeffery model is inval-
idated, and as shown by Pennacchioni et al. (2001)
and Mulchrone (2007b), we should expect a different
relationship between object inclination and the vor-
ticity of flow respect to the one described in equations
(1) and (2). As a consequence, when we analyse a
population of porphyroclasts using a η vs. R plot dia-
gram or a η vs. plots as a blind application of the clas-
sical curves (Passchier, 1987; Jessup et al., 2007), the
best fitting approach could produce erroneous results

especially if the data are quite scattered. The best
thing would be to test which of the slipping or no
slipping related curves better approximate the distri-
bution of points and then try to understand which
systematic errors described above should be taken in
account. As suggested by Passchier (1987) and
Mulchrone (2007a) to obtain realistic estimate of vor-
ticity numbers and to be able to distinguish the abili-
ty of the different curves in fitting the distribution of
data in a η vs. R plot, a large number of porphyroclast
are required. 

Conclusion

A discussion on the possible systematic errors distri-
bution expected in performing vorticity analyses is
presented. From theoretical consideration we expect
to obtain some ambiguities in vorticity numbers
measurements especially if shear zones registered
transpressive or pure shear dominated deformation.
These ambiguities are mainly due to the errors
induced during the sectional radii estimation and the
recognition of the maximum vorticity plane. Finally,
during the analysis of the η vs. R plot point data set
we suggest to apply the all-slipping and non-slipping
vorticity plots in order to discriminate the potential
slipping effect in the kinematics history of the high
strain shear zones investigated. In case of scattered η
vs. R data sets, we suggest to apply the all-slipping
and non-slipping vorticity plots as best fitting curves.
This will fine tune the vorticity analysis and enable to
check likely slipping effect in the porphyroclast-
matrix system.
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Figure 4. Diagram showing the dilatancy effect on the vorticity
numbers, at various fixed shear components. For high shear val-
ues (1.5 to 2), the effect of dilatancy on vorticity numbers is very
low and could be neglected. For low shear strain values the effect
becomes important.
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