Usu de la enerxía solar nel ámbito de la metalurxa ya la ciencia de los materiales
PDF

Como citar

Fernández-González, D. (2023). Usu de la enerxía solar nel ámbito de la metalurxa ya la ciencia de los materiales. Ciencies. Cartafueyos Asturianos De Ciencia Y Teunoloxía, 13(1). Retrieved from https://reunido.uniovi.es/index.php/CCACT/article/view/20551
PDF

Referencies bibliográfiques

Adinberg, A. & Epstein, M. (2004). Experimental study of solar reactors for carboreduction of zinc oxide. Energy, 29, 757–769. https://doi.org/10.1016/S0360-5442(03)00182-8

Armas, B., Combescure, C. & Trombe, F. (1976). Chemical vapor deposition of NbB2 and TaB2 through heating by concentration of solar radiation. J. Electrochem. Soc., 123 (2), 308–310. https://doi.org/10.1149/1.2132811

Costa-Oliveira, F.A., Granier, B., Badie, J.M., Cruz-Fernandes, J., Guerra-Rosa, L. & Shohoji, N. (2008). Surface singularity upon solar radiation heating of graphite/tungsten powder mixture compacts to temperatures in excess of 1600°C. Mater. Sci. Forum, 587–588, 993–997. https://doi.org/10.4028/www.scientific.net/MSF.587-588.993

Costa-Oliveira, F.A., Rosa, L.G., Fernandes, J.C., Rodríguez, J., Cañadas, I., Martínez, D. & Shohoji, N. (2009). Mechanical properties of dense cordierite discs sintered by solar radiation heating. Mater. Trans. 50, 2221–2228. https://doi.org/10.2320/matertrans.MRA2008369

Coursol, P., Cardona, N., Mackey, P., Bell, S. & Davis, B. (2012). Minimization of copper losses in copper smelting slag during electric furnace treatment. JOM, 64, 1305–1313. https://doi.org/10.1007/s11837-012-0454-6

Cruz-Fernandes, J., Guerra, L., Martínez, D., Rodríguez, J. & Shohoji, N. (1998). Influence of gas environment on synthesis of silicon carbide through reaction between silicon and amorphous carbon in a solar furnace at PSA (Plataforma Solar de Almería). J. Ceramic Soc. Japan, 106, 839–841. https://doi.org/10.2109/jcersj.106.839

Cruz-Fernandes, J., Anjinho, C., Amaral, P.M., Guerra-Rosa, L., Rodríguez, J., Martínez, D., Almeida Costa Oliveira, F. & Shohoji, N. (2002). Characterization of solar-synthesised TiCX (X=0.5, 0.625, 0.75, 0.85, 0.90 and 1.0) by x-ray diffraction, density and Vickers microhardness. Mater. Chem. Phys. 77, 711–718. https://doi.org/10.1016/S0254-0584(02)00131-1

Cruz-Fernandes, J., Costa-Oliveira, F.A., Granier, B., Badie, J., Guerra-Rosa, L. & Shohoji, N. (2006). Kinetic aspects of reaction between tantalum and carbon material (active carbon or graphite) under solar radiation heating. Sol. Energy, 80, 1553–1560. https://doi.org/10.1016/j.solener.2006.01.001

Dias, S., Costa-Oliveira, F.A., Granier, B., Badie, J., Cruz-Fernandes, J., Guerra-Rosa, L. & Shohoji, N. (2007). Nano-meter size WC whiskers grown over a compacted pellet of graphite/tungsten powder mixture heated with an ultra-fast heating rate by a concentrated solar beam. Mater. Trans. 48(5), 919–923. https://doi.org/10.2320/matertrans.48.919

Epstein, M., Ehrensberger, K. & Yogev, A. (2004). Ferro-reduction of ZnO using concentrated solar energy. Energy, 29, 745–756. https://doi.org/10.1016/S0360-5442(03)00181-6

Fernández-González, D., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J., Mochón-Castaños, J., Sancho-Gorostiaga, J. & Verdeja, L. F. (2018a). Concentrated solar energy applications in materials science and metallurgy. Sol. Energy 170 (8), 520-540. https://doi.org/10.1016/j.solener.2018.05.065

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J. & Verdeja, L. F. (2018b). Iron metallurgy via concentrated solar energy. Metals 8(11), 873. https://doi.org/10.3390/met8110873

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J. & Verdeja, L. F. (2018c). Solar synthesis of calcium aluminates. Sol. Energy. 171(9), 658-666. https://doi.org/10.1016/j.solener.2018.07.012

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J. & Verdeja, L. F. (2019a). Transformations in the Si-O-Ca system: Silicon-calcium via solar energy. Sol. Energy. 181(3), 414-423. https://doi.org/10.1016/j.solener.2019.02.026

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J. & Verdeja, L. F. (2019b). Transformations in the Mn-O-Si system using concentrated solar energy. Sol. Energy. 181(5), 148-152. https://doi.org/10.1016/j.solener.2019.04.004

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Piñuela-Noval, J. & Verdeja, L. F. (2019c). The treatment of Basic Oxygen Furnace (BOF) slag with concentrated solar energy. Sol. Energy. 180(3), 372-382. https://doi.org/10.1016/j.solener.2019.01.055

Fernández-González, D., Prazuch, J., Ruiz-Bustinza, I., González-Gasca, C., Gómez-Rodríguez, C. & Verdeja, L. F. (2021). Recovery of Copper and Magnetite from Copper Slag Using Concentrated Solar Power (CSP). Metals. 11(7), 1032; https://doi.org/10.3390/met11071032

Flamant, G., Hernandez, D. & Traverse, J. (1980). Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3. Sol. Energy, 24 (4), 385–395. https://doi.org/10.1016/0038-092X(80)90301-1

Fletcher, E.A. & Noring, J.E. (1983). High temperature solar electrothermal processing- Zinc from zinc oxide. Energy, 8, 247–254. https://doi.org/10.1016/0360-5442(83)90100-7

Fletcher, E.A., Macdonald, F.J. & Kunnerth, D. (1985). High temperature solar electrothermal processing-II. Zinc from zinc oxide. Energy, 10, 1255–1272. https://doi.org/10.1016/0360-5442(85)90136-7

García-Cambronero, L. E., Ruíz-Román, J. M., Cañadas, I. & Martínez, D. (2004). Características de la estructura celular en espumas d’Al-7Si con mármol obtenidas mediante energía solar concentrada, Memorias del IX Congreso Nacional de Materiales, Vigo, España, pp. 499–502.

García-Cambronero, L.E., Cañadas, I., Díaz, J.J., Ruíz-Román, J.M. & Martínez, D. (2008). Tratamiento térmico de espumación de precursores de aluminio-silicio en horno solar de lecho fluidificado, Memorias del X Congreso Nacional de Materiales, San Sebastián, España, pp. 261–264.

García-Cambronero, L.E., Cañadas, I., Martínez, D. & Ruíz-Román, J.M. (2010). Foaming of aluminium-silicon alloy using concentrated solar energy. Sol. Energy. 84, 879–887. https://doi.org/10.1016/j.solener.2009.11.014

Gopalakrishna, K.R. & Seshan, S. (1984). Solar furnace for small scale metallurgical applications in Energy Developments: New Forms, Renewables, Conservation (Curtis, F.A. (Ed.)), Ontario, Canada: Ed. Pergamon Press, pp. 585–593.

Granier, B., Badie, J., Costa-Oliveira, F.A., Magalhaes, T., Shohoji, N., Guerra-Rosa, L. & Cruz-Fernandes, J. (2008). Carbide synthesis from graphite/molybdenum powder mixtures at sub-stoichiometric ratios under solar radiation heating to 1900 °C. Mater. Trans. 49 (11), 2673–2678. https://doi.org/10.2320/matertrans.MRA2008202

Granier, B., Shohoji, N., Costa-Oliveira, F.A., Magalhaes, T., Cruz-Fernandes, J. & Guerra- Rosa, L. (2009). Carbide phases synthesised from C/Mo powder compacts at specified sub-stoichiometric ratios by solar radiation heating to temperaturas between 1600 °C and 2500 °C. Mater. Trans. 50 (12), 2813–2819. https://doi.org/10.2320/matertrans.M2009167

Guerra-Rosa, L., Miguel-Amaral, P., Anjinho, C., Cruz-Fernandes, C. & Shohoji, N. (2002). Fracture toughness of solarsintered WC with Co additive. Ceram. Int. 28, 345–348. https://doi.org/10.1016/S0272-8842(01)00099-2

Gutiérrez-López, J., Levenfeld, B., Várez, A., Cañadas, I. & Rodríguez, J. (2010). Solar sintering of Ni-Zn ferrites: Densification and magnetic properties, PM2010 World Congress-Alternative Sintering Processes. Florencia (Italia) 230–237.

Heo, J.H., Chung, Y. & Park, J.H. (2016). Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J. Clean. Prod. 137, 777–787. https://doi.org/10.1016/j.jclepro.2016.07.154

Herranz, G., Romero, A., de Castro, V. & Rodríguez, G.P. (2013). Development of high-speed steel sintered using concentrated solar energy. J. Mater. Process. Technol. 213, 2065–2073. https://doi.org/10.1016/j.jmatprotec.2013.06.002

Imhof, A. (1997). Decomposition of limestone in a solar reactor. Renew. Energy. 10 (2/3), 239–246. https://doi.org/10.1016/0960-1481(96)00072-9

Kaddou, A.K. & Abdul-Latif, A. (1969). The feasibility of joining metal using a solar furnace. Sol. Energy, 12, 377–378. https://doi.org/10.1016/0038-092x(69)90051-6

Kambham, K., Sangameswaran, S., Datar, S.R. & Kura, B. (2007). Copper slag: Optimization of productivity and consumption for cleaner production in dry abrasive blasting. J. Clean Prod. 15(5), 465–473. https://doi.org/10.1016/j.jclepro.2005.11.024

Karalis, D.G., Pantelis, D.I. & Papazoglou, V.J. (2005). On the investigation of 7075 aluminum alloy welding using concentrated solar energy. Solar Energy Mater. Solar Cells. 86, 145–163. https://doi.org/10.1016/j.solmat.2004.07.007

Kim, I.S., Prasad, Y.K.D.V. & Stoynov, L.A. (2004). A study on an intelligent system to predict the tensile stress in welding using solar energy concentration. J. Mater. Process. Technol. 153–154, 649–653. https://doi.org/10.1016/j.jmatprotec.2004.04.111

Laplaze, D., Bernier, P., Flamant, G., Lebrun, M., Brunelle, A. & Della-Negra, S. (1996). Solar energy: Application to the production of fullerenes. J. Phys. B: At. Mol. Opt. Phys. 29, 4943–4954. https://doi.org/10.1088/0953-4075/29/21/008

La Nueva España (2020). Asturiana de Zinc consume tanta electricidad como la comunidad de La Rioja. https://www.lne.es/aviles/2020/02/06/asturiana-zinc-consume-electricidad-comunidad-20399948.html#:~:text=La%20empresa%20Asturiana%20de%20Zinc,525.794%20toneladas%20de%20cinc%20metal

Li, K., Ping, S., Wang, H. & Ni, W. (2013). Recovery of iron from copper slag by deep reduction and magnetic beneficiation. Int. J. Min. Met. Mater. 20, 1035–1041. https://doi.org/10.1007/s12613-013-0831-3

Loutzenhiser, P.G., Tuerk, O. & Steinfeld, A. (2010). Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy. JOM, 62, 49–54. https://doi.org/10.1007/s11837-010-0137-0

Lytvynenko, Y.M. (2013). Obtaining aluminum by the electrolysis with the solar radiation using. Appl. Solar Energy. 49 (1), 4–6. https://doi.org/10.3103/S0003701X13010088

Meier, A., Bonaldi, E., Cella, G.M., Lipinski, W., Wuillemin, D. & Palumbo, R. (2004). Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy. 29, 811–821. https://doi.org/10.1016/S0360-5442(03)00187-7

Meier, A., Bonaldi, E., Cella, G.M. & Lipinski, W. (2005a). Multitube rotary kiln for the industrial solar production of lime. J. Sol. Energy Eng. 127 (3), 386–395. https://doi.org/10.1115/1.1979517

Meier, A., Gremaud, N. & Steinfeld, A. (2005b). Economic evaluation of the industrial solar production of lime. Energy Conver. Manage. 46, 905–926. https://doi.org/10.1016/j.enconman.2004.06.005

Meier, A., Bonaldi, E., Cella, G.M., Lipinski, W. & Wuillemin, D. (2006). Solar chemical reactor technology for industrial production of lime. Sol. Energy. 80, 1355–1362. https://doi.org/10.1016/j.solener.2005.05.017

Murray, J.P. (2001). Solar production of aluminum by direct reduction: Preliminary results for two processes. J. Sol. Energy Eng. 123, 125–132. https://doi.org/10.1115/1.1351809

Murray, J.P., Flamant, G. & Roos, C.J. (2006). Silicon and solar-grade silicon production by solar dissociation of Si3N4. Sol. Energy, 80, 1349–1354. https://doi.org/10.1016/j.solener.2005.11.009

Osinga, T., Frommherz, U., Steinfeld, A. & Wieckert, C. (2004). Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor. J. Sol. Energy Eng. 126, 633–637. https://doi.org/10.1115/1.1639001

Palumbo, R.D. & Fletcher, E.A. (1988). High temperature solar electrothermal processing-III. Zinc from zinc oxide at 1200–1675 K using a non-consumable anode. Energy, 13, 319–332. https://doi.org/10.1016/0360-5442(88)90027-8

Revuelta-Acosta, J.D., García-Díaz, A., Soto-Zarazua, G.M. & Rico-García, E. (2010). Adobe as sustainable material: A thermal performance. J. Appl. Sci. 10 (19), 2211–2216. https://doi.org/10.3923/jas.2010.2211.2216

Rodríguez, M.A. & Soroza, B. (2006). Determination of the optimum composition of adobe brick for a school in Cuba. Materiales de Construcción 56 (282), 53–62. https://doi.org/10.3989/mc.2006.v56.i282.27

Rodríguez, G.P., Herranz, G. & Romero, A. (2013). Solar gas nitriding of Ti6Al4V alloy. Appl. Surf. Sci., 283, 445–452. https://doi.org/10.1016/j.apsusc.2013.06.128

Romero, A., García, I., Arenas, M.A., López, V. & Vázquez, A. (2013). High melting point metals welding by concentrated solar energy. Sol. Energy, 95, 131–143. https://doi.org/10.1016/j.solener.2013.05.019

Rossi, C. (2010). Archimedes’ cannons against the roman fleet?, en The Genius of Archimedes-23 Centuries of Influence on Mathematics, Science and Engineering, Proceedings of an International Conference held at Syracuse, Italia, 8-10 Xunu, 2010 (editores Stephanos A. Paipetis, Marco Ceccarelli), Londres: Springer, pp. 113–132.

Ruiz-Bustinza, I., Cañadas, I., Rodríguez, J., Mochón, J., Verdeja, L.F., García-Carcedo, F. & Vázquez, A. (2013). Magnetite production from steel wastes with concentrated solar energy. Steel Res. Int. 84, 207–217. https://doi.org/10.1002/srin.201200145

Salman, O.A. (1988). Thermal decomposition of limestone and gypsum by solar energy. Sol. Energy. 41 (4), 305–308. https://doi.org/10.1016/0038-092X(88)90025-4

Shohoji, N., Badie, J., Granier, B., Costa-Oliveira, F.A., Cruz-Fernandes, J. & Guerra-Rosa, L. (2007). Formation of hexagonal η-MoC1-x phase at a temperature lower than 1660 °C by solar radiation heating under presence of excess free carbon. Int. J. Refractory Metals Hard Mater. 25 (3), 220–225. https://doi.org/10.1016/j.ijrmhm.2006.05.004

Sibieude, F., Ducarroir, M., Tofighi, A. & Ambriz, J. (1982). High temperature experiments with a solar furnace: The decomposition of Fe3O4, Mn3O4, CdO. Int. J. Hydrogen Energy, 7, 79–88. https://doi.org/10.1016/0360-3199(82)90209-9

Steinfeld, A., Brack, M., Meier, A., Weidenkaff, A. & Wuillemin, D. (1998). A solar chemical reactor for co-production of zinc and synthesis gas. Energy, 23, 803–814. https://doi.org/10.1016/S0360-5442(98)00026-7

Suresh, D. & Rohatgi, P.K. (1979). Melting and casting of alloys in a solar furnace. Sol. Energy, 23, 553–555. https://doi.org/10.1016/0038-092X(79)90084-7

Suresh, D. & Rohatgi, P.K. (1981). Heat transfer analysis on metal-melting in a foundry solar furnace. Sol. Energy, 26, 87–90. https://doi.org/10.1016/0038-092X(81)90116-X

Tzouganatos, N., Matter, R., Wieckert, C., Antrekowitsch, J., Gamroth, M. & Steinfeld, A. (2013). Thermal recycling of Waelsz oxide using concentrated solar energy. JOM, 65 (12), 1733–1743. https://doi.org/10.1007/s11837-013-0778-x

Wieckert, C., Frommherz, U., Kräupl, S., Guillot, E., Olalde, G., Epstein, M., Santén, S., Osinga, T. & Steinfeld, A. (2006). A 300kW solar chemical pilot plant for the carbothermic production of zinc. J. Sol. Energy Eng. 129 (2), 190–196. https://doi.org/10.1115/1.2711471

Yu, Z.K., Zong, Q.Y. & Tam, Z.T. (1982). A preliminary investigation on surface hardening of steel and iron by solar energy. J. Heat Treat. 2, 344–350. https://doi.org/10.1007/BF02833201

Zhilinska, N., Zalite, I., Rodríguez, J., Martínez, D. & Cañadas, I. (2003). Sintering of nanodisperse powders in a solar furnace, EUROPM2003. Sintering 423–428.