Resumen
Antecedentes: el p-valor es hoy en día, pese a las críticas, uno de los elementos clave del contraste de hipótesis. La estadística Bayesiana y los factores de Bayes han sido propuestos como alternativas para mejorarlo. Este estudio compara la ejecución de dos factores de Bayes con el p-valor cuando la hipótesis nula es la más plausible. Método: se simularon un millón de pares de conjuntos de datos independientes procedentes de poblaciones normales y se consideraron diferentes tamaños muestrales. Se calcularon los p-valores para comparar las medias muestrales para cada par de muestras, así como las alternativas Bayesianas. Resultados: los factores de Bayes muestran mejor ejecución que el p-valor, favoreciendo la hipótesis nula frente a la alternativa. El Factor de Bayes basado en el BIC funciona mejor que la calibración del p-valor bajo las condiciones simuladas y su comportamiento mejora a medida que el tamaño de la muestra aumenta. Conclusiones: nuestros resultados muestran que los factores de Bayes son buenos complementos para el contraste de hipótesis. Su utilización puede ayudar a los investigadores a no caer en falsos descubrimientos estadísticos y nosotros sugerimos el uso conjunto de la estadística clásica y Bayesiana.