Métodos de Detección del Falseamiento en Test Online
PDF

Cómo citar

Sanz, S., Luzardo, M., García, C., & Abad, F. J. (2020). Métodos de Detección del Falseamiento en Test Online. Psicothema, 32(Número 4), 549–558. Recuperado a partir de https://reunido.uniovi.es/index.php/PST/article/view/17057

Resumen

Antecedentes: las pruebas de selección en línea sin vigilancia (UIT) son vulnerables a intentos de falseamiento para obtener puntuaciones superiores. Por ello, en ocasiones se utilizan procedimientos de detección, como aplicar posteriormente un test de verificación (VT). El objetivo del estudio es comparar cinco contrastes estadísticos para la detección del falseamiento en Test Adaptativos Informatizados: Z-test de Guo y Drasgow, Medida de Cambio Adaptativa (AMC), Test de Razón de Verosimilitudes (LRT), Score Test y Modified Signed Likelihood Ratio Test(MSLRT). Método: se simularon respuestas de participantes honestos y falseadores al UIT y al VT. Para los participantes honestos se simulaban en ambos en función de su nivel de rasgo real; para los falseadores, solo en el VT, y en el UIT se simulaban distintos grados de falseamiento. Después, se obtenían las tasas de error tipo I y potencia. Resultados: Se encontraron diferencias en las tasas de error tipo I entre algunos procedimientos, pero todos menos el Score Test se ajustaron al valor nominal. La potencia obtenida era significativamente superior con el MSLRT. Conclusiones: consideramos que MSLRT es la mejor alternativa, ya que tiene mejor potencia y una tasa de error tipo I ajustada.
PDF