Resumen
El objetivo de este estudio fue comparar el rendimiento en predicción entre los modelos de Redes Neuronales Artificiales (RNA) y el modelo de riesgos proporcionales de Cox en el contexto del análisis de supervivencia. Más concretamente, se intentó comprobar: a) si el modelo de redes neuronales jerárquicas es más preciso que el modelo de Cox, y b) si el modelo de redes neuronales secuenciales supo ne una mejora respecto al modelo de redes neuronales jerárquicas. La precisión fue evaluada a partir de medidas de resolución (área bajo la curva ROC) y calibración (prueba de Hosmer-Lemeshow) usando un conjunto de datos de supervivencia. Los resultados mostraron que las redes neuronales jerárquicas tienen un mejor rendimiento en resolución que el modelo de Cox, mientras que las redes secuenciales no suponen una mejora respecto a las r edes neuronales jerárquicas. Finalmente, los modelos de RNA proporcionan curvas de supervivencia más ajustadas a la realidad que el modelo de Cox.