Resumen
Antecedentes: El deterioro cognitivo relacionado con la edad está aumentando debido a una mayor esperanza de vida, lo que requiere nuevos tratamientos, ya que los medicamentos actuales son ineficaces y costosos. La estimulación transcraneal por corriente alterna en frecuencia theta (theta-tACS) ha mostrado potencial para mejorar la función cognitiva tanto en adultos jóvenes como mayores, pero su efectividad en personas con deterioro cognitivo no está bien estudiada. Método: Este estudio incluyó a 27 participantes con deterioro cognitivo subjetivo (DCS), deterioro cognitivo leve (DCL) y demencia, quienes se sometieron a múltiples sesiones que combinaron entrenamiento cognitivo computarizado con theta-tACS para evaluar su eficacia. Fueron asignados aleatoriamente a un grupo de tACS real o un grupo de tACS placebo. Antes y después del tratamiento, completaron tareas cognitivas y se recogieron datos comportamentales y de EEG. Resultados: Solo el grupo de tACS real mejoró en la tarea oddball y presentó un aumento en la amplitud del EEG en el rango theta. Conclusiones: Estos hallazgos sugieren que theta-tACS puede mejorar el rendimiento cognitivo en personas con deterioro cognitivo, a nivel conductual y psicofisiológico, apoyando su potencial para aliviar el deterioro cognitivo en poblaciones mayores.
Citas
Abellaneda-Pérez, K., Vaqué-Alcázar, L., Perellón-Alfonso, R., Bargalló, N., Kuo, M.-F., Pascual-Leone, A., Nitsche, M. A., & Bartrés- Faz, D. (2020). Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Frontiers in Neuroscience, 13, Article 1440. https://doi.org/10.3389/fnins.2019.01440
Abubaker, M., Al Qasem, W., & Kvašňák, E. (2021). Working memory and cross-frequency coupling of neuronal oscillations. Frontiers in Psychology, 12, Article 4506. https://doi.org/10.3389/fpsyg.2021.756661
Al Qasem, W., Abubaker, M., & Kvašňák, E. (2022). Working memory and transcranial-alternating current stimulation—state of the art: findings, missing, and challenges. Frontiers in Psychology, 13, Article 822545. https://doi.org/10.3389/FPSYG.2022.822545
Alekseichuk, I., Pabel, S. C.,Antal,A., & Paulus, W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restorative Neurology and Neuroscience, 35(2), 147–158. https://doi.org/10.3233/RNN-160714
Alekseichuk, I., Turi, Z., de Lara, G. A., Antal, A., & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26(12), 1513–1521. https://doi.org/10.1016/j.cub.2016.04.035
Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., Cohen, L. G., Dowthwaite, G., Ellrich, J., Flöel, A., Fregni, F., George, M. S., Hamilton, R., Haueisen, J., Herrmann, C. S., Hummel, F. C., Lefaucheur, J. P., Liebetanz, D., Loo, C. K., … Paulus, W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001
Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7, Article 10340. https://doi.org/10.1038/NCOMMS10340
Borghini, G., Candini, M., Filannino, C., Hussain, M., Walsh, V., Romei, V., Zokaei, N., & Cappelletti, M. (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. The Journal of Neuroscience, 38(18), 4418-4429. https://doi.org/10.1523/JNEUROSCI.1285-17.2018
Cespón, J., Galdo-Álvarez, S., & Díaz, F. (2018a). Event-related potentials reveal altered executive control activity in healthy elderly with subjective memory complaints. Frontiers in Human Neuroscience, 12, Article 445. https://doi.org/10.3389/FNHUM.2018.00445
Cespón, J., Miniussi, C., & Pellicciari, M. C. (2018b). Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Research Reviews, 43, 81–98. https://doi.org/10.1016/j.arr.2018.03.001
Cid-Fernández, S., Lindín, M., & Díaz, F. (2021). Event-related brain potential indexes provide evidence for some decline in healthy people with subjective memory complaints during target evaluation and response inhibition processing. Neurobiology of Learning and Memory, 182, Article 107450. https://doi.org/10.1016/j.nlm.2021.107450
Clark, K., Squire, R. F., Merrikhi, Y., & Noudoost, B. (2015). Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Progress in Neurobiology, 132, 59–80. https://doi.org/10.1016/J.PNEUROBIO.2015.06.006
Cruz, P., Fong, K. N. K., & Brown, T. (2021). Transcranial direct current stimulation as an adjunct to cognitive training for older adults with mild cognitive impairment: A randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 64(5), Article 101536. https://doi.org/10.1016/j.rehab.2021.101536
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Facal, D., Guàrdia-Olmos, J., Pereiro, A. X., Lojo-Seoane, C., Peró, M., & Juncos-Rabadán, O. (2019). Using an overlapping time interval strategy to study diagnostic instability in Mild Cognitive Impairment subtypes. Brain Sciences, 9(9), Article 242. https://doi.org/10.3390/BRAINSCI9090242
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146
Fertonani, A., Ferrari, C., & Miniussi, C. (2015). What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical Neurophysiology, 126(11), 2181–2188. https://doi.org/10.1016/j.clinph.2015.03.015
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/J.TICS.2005.08.011
Fröhlich, F. (2015). Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Progress in Brain Research, 222, 41–73. https://doi.org/10.1016/bs.pbr.2015.07.025
Goodman, M. S., Kumar, S., Zomorrodi, R., Ghazala, Z., Cheam, A. S.M., Barr, M. S., Daskalakis, Z. J., Blumberger, D. M., Fischer, C., Flint, A., Mah, L., Herrmann, N., Bowie, C. R., Mulsant, B. H., Rajji, T. K., Pollock, B. G., Lourenco, L., Butters, M., Gallagher, D., … Voineskos, A. N. (2018). Theta-Gamma coupling and working memory in Alzheimer’s dementia and Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 10, Article 101. https://doi.org/10.3389/fnagi.2018.00101
Grover, S., Nguyen, J. A., & Reinhart, R. M. G. (2021). Synchronizing brain rhythms to improve cognition. Annual Review of Medicine, 72, 29–43. https://doi.org/10.1146/ANNUREV-MED-060619-022857
Hafkemeijer, A., Altmann-Schneider, I., Oleksik, A. M., Van De Wiel, L., Middelkoop, H. A. M., Van Buchem, M. A., Van Der Grond, J., & Rombouts, S. A. R. B. (2013). Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connectivity, 3(4), 353–362. https://doi.org/10.1089/brain.2013.0144
Hanslmayr, S., Axmacher, N., & Inman, C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends in Neurosciences, 42(7), 485–499. https://doi.org/10.1016/j.tins.2019.04.004
Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?-Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936–949. https://doi.org/10.1002/HIPO.20116
Hsieh, L. T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721–729. https://doi.org/10.1016/J.NEUROIMAGE.2013.08.003
Hsu, W.-Y., Zanto, T. P., Van Schouwenburg, M. R., & Gazzaley, A. (2017). Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation. PLoS ONE, 12(5), Article e0178579. https://doi.org/10.1371/journal.pone.0178579
Jones, D. T., & Graff-Radford, J. (2021). Executive dysfunction and the prefrontal cortex. Continuum: Lifelong Learning in Neurology, 27(6), 1586–1601. https://doi.org/10.1212/CON.0000000000001009
Jones, K. T., Johnson, E. L., Gazzaley, A., & Zanto, T. P. (2022). Structural and functional network mechanisms of rescuing cognitive control in aging. NeuroImage, 262, Article 119547. https://doi.org/10.1016/j.neuroimage.2022.119547
Jones, K. T., Ostrand, A. E., Gazzaley, A., & Zanto, T. P. (2023). Enhancing cognitive control in amnestic mild cognitive impairment via at-home non-invasive neuromodulation in a randomized trial. Scientific Reports, 13, Article 7435. https://doi.org/10.1038/s41598-023-34582-1
Kehler, L., Francisco, C. O., Uehara, M. A., & Moussavi, Z. (2020). The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2020, 3649– 3653. https://doi.org/10.1109/EMBC44109.2020.9175903
Kim, J., Kim, H., Jeong, H., Roh, D., & Kim, D. H. (2021). tACS as a promising therapeutic option for improving cognitive function in Mild Cognitive Impairment: A direct comparison between tACS and tDCS. Journal of Psychiatric Research, 141, 248–256. https://doi.org/10.1016/j.jpsychires.2021.07.012
Kirova, A. M., Bays, R. B., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, Mild Cognitive Impairment, and Alzheimer’s Disease. BioMed Research International, 2015, Article 748212. https://doi.org/10.1155/2015/748212
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63– 88. https://doi.org/10.1016/J.BRAINRESREV.2006.06.003
Klink, K., Paßmann, S., Kasten, F. H., & Peter, J. (2020). The modulation of cognitive performance with transcranial alternating current stimulation: A systematic review of frequency-specific effects. Brain Sciences, 10(12), Article 932. https://doi.org/10.3390/brainsci10120932
Lee, T. L., Lee, H., & Kang, N. (2023). A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. npj Science of Learning, 8, Article 1. https://doi.org/10.1038/s41539-022-00152-9
Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441. https://doi.org/10.1162/089976699300016719
Liu, C. S., Herrmann, N., Gallagher, D., Rajji, T. K., Kiss, A., Vieira, D., & Lanctôt, K. L. (2020). A pilot study comparing effects of bifrontal versus bitemporal transcranial direct current stimulation in Mild Cognitive Impairment and mild Alzheimer Disease. Journal of ECT, 36(3), 211–215. https://doi.org/10.1097/YCT.0000000000000639
Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, Article 213. https://doi.org/10.3389/fnhum.2014.00213
Macmillan, N. A., Creelman, C. D., & Macmillan, A. (1990). Response bias: Characteristics of detection theory, threshold theory, and “nonparametric” indexes. Psychological Bulletin, 107(3), 401–413. https://doi.org/10.1037/0033-2909.107.3.401
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s Disease. Alzheimer’s and Dementia, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005
Mendoza, N., Del Valle, S., Rioja, N., Gomez-Pilar, J., & Hornero, R. (2018). Potential benefits of a cognitive training program in Mild Cognitive Impairment (MCI). Restorative Neurology and Neuroscience, 36(2), 207–213. https://doi.org/10.3233/RNN-170754
Moussavi, Z., Kimura, K., Kehler, L., de Oliveira Francisco, C., & Lithgow, B. (2021). A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Frontiers in Aging, 2, Article 632545. https://doi.org/10.3389/fragi.2021.632545
Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage, 18(3), 789– 797. https://doi.org/10.1016/S1053-8119(02)00032-0
Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820–827. https://doi.org/10.1038/s41593-019-0371-x
Riddle, J., Scimeca, J. M., Cellier, D., Dhanani, S., & D’Esposito, M. (2020). Causal evidence for a role of theta and alpha oscillations in the control of working memory. Current Biology, 30(9), 1748–1754. https://doi.org/10.1016/j.cub.2020.02.065
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16–25. https://doi.org/10.1016/J.TICS.2013.10.010
Sanches, C., Stengel, C., Godard, J., Mertz, J., Teichmann, M., Migliaccio, R., & Valero-Cabré, A. (2021). Past, present, and future of non- invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: Time for a comprehensive critical review. Frontiers in Aging Neuroscience, 12, Article 578339. https://doi.org/10.3389/fnagi.2020.578339
Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34(7), 1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., McHugh, T. L., & Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67(5), 834–842. https://doi.org/10.1212/01.wnl.0000234032.77541.a2
Schutter, D. J. L. G., & Wischnewski, M. (2016). A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia, 86, 110–118. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2016.04.011
Tavakoli, A. V., & Yun, K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience, 11, Article 214. https://doi.org/10.3389/fncel.2017.00214
Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., & Singer, W. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, Article 17. https://doi.org/10.3389/neuro.07.017.2009
Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550
Viviano, R. P., Hayes, J. M., Pruitt, P. J., Fernandez, Z. J., van Rooden, S., van der Grond, J., Rombouts, S. A. R. B., & Damoiseaux, J. S. (2019). Aberrant memory system connectivity and working memory performance in subjective cognitive decline. NeuroImage, 185, 556–564. https://doi.org/10.1016/j.neuroimage.2018.10.015
Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195– 1268. https://doi.org/10.1152/PHYSREV.00035.2008
Wang, X., Mao, Z., Ling, Z., & Yu, X. (2020). Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s Disease: a meta-analysis of randomized controlled trials. Journal of Neurology, 267(3), 791–801. https://doi.org/10.1007/S00415-019-09644-Y
Wischnewski, M., Alekseichuk, I., & Opitz, A. (2023). Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends in Cognitive Sciences, 27(2), 189–205. https://doi.org/10.1016/j.tics.2022.11.013
Zanto, T. P., Jones, K. T., Ostrand, A. E., Hsu, W. Y., Campusano, R., & Gazzaley, A. (2021). Individual differences in neuroanatomy and neurophysiology predict effects of transcranial alternating current stimulation. Brain Stimulation, 14(5), 1317–1329. https://doi.org/10.1016/J.BRS.2021.08.017
Zurrón, M., Lindín, M., Cespón, J., Cid-Fernández, S., Galdo-álvarez, S., Ramos-Goicoa, M., & Díaz, F. (2018). Effects of mild cognitive impairment on the event-related brain potential components elicited in executive control tasks. Frontiers in Psychology, 9, Article 842. https://doi.org/10.3389/fpsyg.2018.00842