Transcranial Alternating Current Stimulation and Cognitive Training Enhanced Performance and Theta Activity in Adults With Cognitive Impairment
PDF

Keywords

Subjective cognitive decline (SCD)
Mild cognitive impairment (MCI)
Dementia
Transcranial alternating current
stimulation (tACS)
Attention Deterioro cognitivo subjetivo (DCS)
Deterioro cognitivo ligero (DCL)
Demencia
Estimulación eléctrica transcraneal
por corriente alterna (tACS)
Atención

How to Cite

Cid-Fernández, S., Nieto-Vieites, A., X. Pereiro, A., & Díaz, F. (2025). Transcranial Alternating Current Stimulation and Cognitive Training Enhanced Performance and Theta Activity in Adults With Cognitive Impairment. Psicothema, 37(2), 1–11. Retrieved from http://reunido.uniovi.es/index.php/PST/article/view/23493

Abstract

Background: Age-related cognitive decline is rising due to longer life expectancy, necessitating new treatments as current drugs are ineffective and costly. Transcranial alternating current stimulation at the theta frequency (theta-tACS) has shown promise in enhancing cognitive function in both young and elderly adults, but its effectiveness in those with cognitive decline is not well-studied. Method: This study involved 27 participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia, who underwent multiple sessions combining computerized cognitive training with theta-tACS to assess its efficacy. Participants were randomly assigned to either a real-tACS or sham-tACS group. Before and after treatment, they completed several cognitive tasks, and their behavioral and EEG data were collected. Results: Only the real-tACS group improved in the oddball task and exhibited increased event-related EEG amplitude in the theta range. Conclusions: These findings suggest that theta-tACS can improve cognitive performance in individuals with cognitive decline at both behavioral and psychophysiological levels, supporting its potential for alleviating cognitive decline in elderly populations.

PDF

References

Abellaneda-Pérez, K., Vaqué-Alcázar, L., Perellón-Alfonso, R., Bargalló, N., Kuo, M.-F., Pascual-Leone, A., Nitsche, M. A., & Bartrés- Faz, D. (2020). Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Frontiers in Neuroscience, 13, Article 1440. https://doi.org/10.3389/fnins.2019.01440

Abubaker, M., Al Qasem, W., & Kvašňák, E. (2021). Working memory and cross-frequency coupling of neuronal oscillations. Frontiers in Psychology, 12, Article 4506. https://doi.org/10.3389/fpsyg.2021.756661

Al Qasem, W., Abubaker, M., & Kvašňák, E. (2022). Working memory and transcranial-alternating current stimulation—state of the art: findings, missing, and challenges. Frontiers in Psychology, 13, Article 822545. https://doi.org/10.3389/FPSYG.2022.822545

Alekseichuk, I., Pabel, S. C.,Antal,A., & Paulus, W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restorative Neurology and Neuroscience, 35(2), 147–158. https://doi.org/10.3233/RNN-160714

Alekseichuk, I., Turi, Z., de Lara, G. A., Antal, A., & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26(12), 1513–1521. https://doi.org/10.1016/j.cub.2016.04.035

Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., Cohen, L. G., Dowthwaite, G., Ellrich, J., Flöel, A., Fregni, F., George, M. S., Hamilton, R., Haueisen, J., Herrmann, C. S., Hummel, F. C., Lefaucheur, J. P., Liebetanz, D., Loo, C. K., … Paulus, W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001

Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7, Article 10340. https://doi.org/10.1038/NCOMMS10340

Borghini, G., Candini, M., Filannino, C., Hussain, M., Walsh, V., Romei, V., Zokaei, N., & Cappelletti, M. (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. The Journal of Neuroscience, 38(18), 4418-4429. https://doi.org/10.1523/JNEUROSCI.1285-17.2018

Cespón, J., Galdo-Álvarez, S., & Díaz, F. (2018a). Event-related potentials reveal altered executive control activity in healthy elderly with subjective memory complaints. Frontiers in Human Neuroscience, 12, Article 445. https://doi.org/10.3389/FNHUM.2018.00445

Cespón, J., Miniussi, C., & Pellicciari, M. C. (2018b). Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Research Reviews, 43, 81–98. https://doi.org/10.1016/j.arr.2018.03.001

Cid-Fernández, S., Lindín, M., & Díaz, F. (2021). Event-related brain potential indexes provide evidence for some decline in healthy people with subjective memory complaints during target evaluation and response inhibition processing. Neurobiology of Learning and Memory, 182, Article 107450. https://doi.org/10.1016/j.nlm.2021.107450

Clark, K., Squire, R. F., Merrikhi, Y., & Noudoost, B. (2015). Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Progress in Neurobiology, 132, 59–80. https://doi.org/10.1016/J.PNEUROBIO.2015.06.006

Cruz, P., Fong, K. N. K., & Brown, T. (2021). Transcranial direct current stimulation as an adjunct to cognitive training for older adults with mild cognitive impairment: A randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 64(5), Article 101536. https://doi.org/10.1016/j.rehab.2021.101536

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Facal, D., Guàrdia-Olmos, J., Pereiro, A. X., Lojo-Seoane, C., Peró, M., & Juncos-Rabadán, O. (2019). Using an overlapping time interval strategy to study diagnostic instability in Mild Cognitive Impairment subtypes. Brain Sciences, 9(9), Article 242. https://doi.org/10.3390/BRAINSCI9090242

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146

Fertonani, A., Ferrari, C., & Miniussi, C. (2015). What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical Neurophysiology, 126(11), 2181–2188. https://doi.org/10.1016/j.clinph.2015.03.015

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/J.TICS.2005.08.011

Fröhlich, F. (2015). Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Progress in Brain Research, 222, 41–73. https://doi.org/10.1016/bs.pbr.2015.07.025

Goodman, M. S., Kumar, S., Zomorrodi, R., Ghazala, Z., Cheam, A. S.M., Barr, M. S., Daskalakis, Z. J., Blumberger, D. M., Fischer, C., Flint, A., Mah, L., Herrmann, N., Bowie, C. R., Mulsant, B. H., Rajji, T. K., Pollock, B. G., Lourenco, L., Butters, M., Gallagher, D., … Voineskos, A. N. (2018). Theta-Gamma coupling and working memory in Alzheimer’s dementia and Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 10, Article 101. https://doi.org/10.3389/fnagi.2018.00101

Grover, S., Nguyen, J. A., & Reinhart, R. M. G. (2021). Synchronizing brain rhythms to improve cognition. Annual Review of Medicine, 72, 29–43. https://doi.org/10.1146/ANNUREV-MED-060619-022857

Hafkemeijer, A., Altmann-Schneider, I., Oleksik, A. M., Van De Wiel, L., Middelkoop, H. A. M., Van Buchem, M. A., Van Der Grond, J., & Rombouts, S. A. R. B. (2013). Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connectivity, 3(4), 353–362. https://doi.org/10.1089/brain.2013.0144

Hanslmayr, S., Axmacher, N., & Inman, C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends in Neurosciences, 42(7), 485–499. https://doi.org/10.1016/j.tins.2019.04.004

Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?-Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936–949. https://doi.org/10.1002/HIPO.20116

Hsieh, L. T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721–729. https://doi.org/10.1016/J.NEUROIMAGE.2013.08.003

Hsu, W.-Y., Zanto, T. P., Van Schouwenburg, M. R., & Gazzaley, A. (2017). Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation. PLoS ONE, 12(5), Article e0178579. https://doi.org/10.1371/journal.pone.0178579

Jones, D. T., & Graff-Radford, J. (2021). Executive dysfunction and the prefrontal cortex. Continuum: Lifelong Learning in Neurology, 27(6), 1586–1601. https://doi.org/10.1212/CON.0000000000001009

Jones, K. T., Johnson, E. L., Gazzaley, A., & Zanto, T. P. (2022). Structural and functional network mechanisms of rescuing cognitive control in aging. NeuroImage, 262, Article 119547. https://doi.org/10.1016/j.neuroimage.2022.119547

Jones, K. T., Ostrand, A. E., Gazzaley, A., & Zanto, T. P. (2023). Enhancing cognitive control in amnestic mild cognitive impairment via at-home non-invasive neuromodulation in a randomized trial. Scientific Reports, 13, Article 7435. https://doi.org/10.1038/s41598-023-34582-1

Kehler, L., Francisco, C. O., Uehara, M. A., & Moussavi, Z. (2020). The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2020, 3649– 3653. https://doi.org/10.1109/EMBC44109.2020.9175903

Kim, J., Kim, H., Jeong, H., Roh, D., & Kim, D. H. (2021). tACS as a promising therapeutic option for improving cognitive function in Mild Cognitive Impairment: A direct comparison between tACS and tDCS. Journal of Psychiatric Research, 141, 248–256. https://doi.org/10.1016/j.jpsychires.2021.07.012

Kirova, A. M., Bays, R. B., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, Mild Cognitive Impairment, and Alzheimer’s Disease. BioMed Research International, 2015, Article 748212. https://doi.org/10.1155/2015/748212

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63– 88. https://doi.org/10.1016/J.BRAINRESREV.2006.06.003

Klink, K., Paßmann, S., Kasten, F. H., & Peter, J. (2020). The modulation of cognitive performance with transcranial alternating current stimulation: A systematic review of frequency-specific effects. Brain Sciences, 10(12), Article 932. https://doi.org/10.3390/brainsci10120932

Lee, T. L., Lee, H., & Kang, N. (2023). A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. npj Science of Learning, 8, Article 1. https://doi.org/10.1038/s41539-022-00152-9

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441. https://doi.org/10.1162/089976699300016719

Liu, C. S., Herrmann, N., Gallagher, D., Rajji, T. K., Kiss, A., Vieira, D., & Lanctôt, K. L. (2020). A pilot study comparing effects of bifrontal versus bitemporal transcranial direct current stimulation in Mild Cognitive Impairment and mild Alzheimer Disease. Journal of ECT, 36(3), 211–215. https://doi.org/10.1097/YCT.0000000000000639

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, Article 213. https://doi.org/10.3389/fnhum.2014.00213

Macmillan, N. A., Creelman, C. D., & Macmillan, A. (1990). Response bias: Characteristics of detection theory, threshold theory, and “nonparametric” indexes. Psychological Bulletin, 107(3), 401–413. https://doi.org/10.1037/0033-2909.107.3.401

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s Disease. Alzheimer’s and Dementia, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005

Mendoza, N., Del Valle, S., Rioja, N., Gomez-Pilar, J., & Hornero, R. (2018). Potential benefits of a cognitive training program in Mild Cognitive Impairment (MCI). Restorative Neurology and Neuroscience, 36(2), 207–213. https://doi.org/10.3233/RNN-170754

Moussavi, Z., Kimura, K., Kehler, L., de Oliveira Francisco, C., & Lithgow, B. (2021). A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Frontiers in Aging, 2, Article 632545. https://doi.org/10.3389/fragi.2021.632545

Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage, 18(3), 789– 797. https://doi.org/10.1016/S1053-8119(02)00032-0

Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820–827. https://doi.org/10.1038/s41593-019-0371-x

Riddle, J., Scimeca, J. M., Cellier, D., Dhanani, S., & D’Esposito, M. (2020). Causal evidence for a role of theta and alpha oscillations in the control of working memory. Current Biology, 30(9), 1748–1754. https://doi.org/10.1016/j.cub.2020.02.065

Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16–25. https://doi.org/10.1016/J.TICS.2013.10.010

Sanches, C., Stengel, C., Godard, J., Mertz, J., Teichmann, M., Migliaccio, R., & Valero-Cabré, A. (2021). Past, present, and future of non- invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: Time for a comprehensive critical review. Frontiers in Aging Neuroscience, 12, Article 578339. https://doi.org/10.3389/fnagi.2020.578339

Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34(7), 1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006

Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., McHugh, T. L., & Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67(5), 834–842. https://doi.org/10.1212/01.wnl.0000234032.77541.a2

Schutter, D. J. L. G., & Wischnewski, M. (2016). A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia, 86, 110–118. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2016.04.011

Tavakoli, A. V., & Yun, K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience, 11, Article 214. https://doi.org/10.3389/fncel.2017.00214

Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., & Singer, W. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, Article 17. https://doi.org/10.3389/neuro.07.017.2009

Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550

Viviano, R. P., Hayes, J. M., Pruitt, P. J., Fernandez, Z. J., van Rooden, S., van der Grond, J., Rombouts, S. A. R. B., & Damoiseaux, J. S. (2019). Aberrant memory system connectivity and working memory performance in subjective cognitive decline. NeuroImage, 185, 556–564. https://doi.org/10.1016/j.neuroimage.2018.10.015

Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195– 1268. https://doi.org/10.1152/PHYSREV.00035.2008

Wang, X., Mao, Z., Ling, Z., & Yu, X. (2020). Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s Disease: a meta-analysis of randomized controlled trials. Journal of Neurology, 267(3), 791–801. https://doi.org/10.1007/S00415-019-09644-Y

Wischnewski, M., Alekseichuk, I., & Opitz, A. (2023). Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends in Cognitive Sciences, 27(2), 189–205. https://doi.org/10.1016/j.tics.2022.11.013

Zanto, T. P., Jones, K. T., Ostrand, A. E., Hsu, W. Y., Campusano, R., & Gazzaley, A. (2021). Individual differences in neuroanatomy and neurophysiology predict effects of transcranial alternating current stimulation. Brain Stimulation, 14(5), 1317–1329. https://doi.org/10.1016/J.BRS.2021.08.017

Zurrón, M., Lindín, M., Cespón, J., Cid-Fernández, S., Galdo-álvarez, S., Ramos-Goicoa, M., & Díaz, F. (2018). Effects of mild cognitive impairment on the event-related brain potential components elicited in executive control tasks. Frontiers in Psychology, 9, Article 842. https://doi.org/10.3389/fpsyg.2018.00842

Downloads

Download data is not yet available.