Resumen
Antecedentes: el análisis de efectos de interacción o moderación entre variables latentes es común en ciencias sociales. Sin embargo, cuando los predictores están correlacionados, los efectos de interacción y cuadráticos se vuelven parecidos, haciendo difícil su distinción. Así, cuando los datos provienen de un modelo de cuadrático a nivel poblacional y el modelo de análisis solo especifica interacciones, se pueden obtener resultados engañosos. Método: este artículo aborda las consecuencias de diferentes tipos de errores de especificación en modelos de ecuaciones estructurales no lineales utilizando un estudio de Monte Carlo. Resultados: los resultados muestran que estimar un modelo con interacciones cuando en la población hay efectos cuadráticos conducirá a una detección equivocada de efectos de moderación con casi plena seguridad, y lo mismo ocurrirá en el escenario opuesto. La estimación simultánea de interacciones y efectos cuadráticos en el modelo conduce a resultados correctos. Conclusiones: la estimación simultánea de efectos de interacción y cuadráticos permite evitar detectar efectos no lineales espurios o engañosos. Los resultados se discuten para ofrecer recomendaciones a los investigadores aplicados.