Coeficiente Alfa: la Resistencia de un Clásico
PDF (English)

Palabras clave

Internal consistency
Reliability
Cronbach’s alpha
Omega
Software Consistencia interna
Fiabilidad
Alfa de Cronbach
Omega
Software

Cómo citar

Doval, E., Viladrich, C., & Angulo-Brunet, A. (2023). Coeficiente Alfa: la Resistencia de un Clásico. Psicothema, 35(1), 05–20. Recuperado a partir de https://reunido.uniovi.es/index.php/PST/article/view/19370

Resumen

Antecedentes: Durante el siglo XX el coeficiente alfa (α) fue ampliamente utilizado en el cálculo de la consistencia interna de las puntuaciones de los test. Después de identificar algunos malos usos, a principios del siglo XXI se difundieron alternativas, especialmente el coeficiente omega (ω). Actualmente α resurge como una opción aceptable. Método: Revisamos aportaciones académicas, hábitos de publicación en revistas y recomendaciones de textos normativos con el fin de identificar buenas prácticas en la estimación de la fiabilidad de consistencia interna. Resultados: Para guiar el análisis, proponemos un diagrama de decisión en tres fases, a saber, descripción de los ítems, ajuste del modelo de medida del test y elección del coeficiente de fiabilidad de las puntuaciones. Para su ejecución proporcionamos recomendaciones sobre el uso de los programas R, Jamovi, JASP, Mplus, SPSS y Stata. Conclusiones: Tanto α como ω son adecuados para ítems que se distribuyen de forma aproximadamente normal y medidas aproximadamente unidimensionales y congenéricas sin cargas factoriales extremas. Cuando los ítems tienen otra distribución, un fuerte componente específico o sus errores están correlacionados, resultan más adecuadas variantes de ω. Algunas de ellas requieren diseños específicos de obtención de datos. A nivel práctico recomendamos un uso crítico del software.

PDF (English)

Citas

American Educational Research Association, American Psychological Association & National Council on Measurement in Education. (2014).

The Standards for Educational and Psychological Testing. American Educational Research Association.

Agresti, A. (1996). An introduction to categorical data analysis. Wiley. American Psychological Association. (2020). Publication manual of the

American Psychological Association (7th ed.). Author. https://doi.org/10.1037/000016S-000

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative

research in psychology: The APA publications and communications board task force report. American Psychologist, 73(1), 3–25. https://doi.org/10.1037/amp0000191

Arbuckle, J. L. (2014). Amos (Version 23.0) [Computer software]. IBM SPSS. Bandalos, D. L. (2021). Item meaning and order as causes of correlated residuals in confirmatory factor analysis. Structural Equation Modeling, 28(6), 903–913. https://doi.org/10.1080/10705511.2021.1916395

Béland, S., & Falk, C. F. (2022). A comparison of modern and popular approaches to calculating reliability for dichotomously scored items.

Applied Psychological Measurement, 46(4), 321–337. https://doi.org/10.1177/01466216221084210

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74(1), 137–143. https://doi.org/10.1007/s11336-008-9100-1

Bentler, P. M. (2017). Specificity-enhanced reliability coefficients. Psychological Methods, 22(3), 527–540. https://doi.org/10.1037/met0000092

Bentler, P. M. (2021). Alpha, FACTT, and beyond. Psychometrika, 86(4), 861– 868. https://doi.org/10.1007/s11336-021-09797-8

Bovaird, J. A., & Koziol, N. A. (2012). Measurement models for orderedcategorical indicators. In R. H. Hoyle (Ed.), Handbook of Structural

Equation Modeling (pp. 495–511). Guilford.

Brennan, R. L. (2001). Generalizability theory. Springer.

Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford.

Chalmers, R. P. (2018). On misconceptions and the limited usefulness of ordinal alpha. Educational and Psychological Measurement, 78(6), 1056–1071. https://doi.org/10.1177/0013164417727036

Cho, E. (2022). The accuracy of reliability coefficients: A reanalysis of existing simulations. Psychological Methods. Advance online publication.

https://doi.org/10.1037/met0000475

Cho, S. J., Shen, J., & Naveiras, M. (2019). Multilevel reliability measures of latent scores within an item response theory framework. Multivariate

Behavioral Research, 54(6), 856–881. https://doi.org/10.1080/00273171.2019.1596780

Christensen, W. F., Wall, M. M., & Moustaki, I. (2022). Assessing dimensionality in dichotomous items when many subjects have all-zero responses: An example from psychiatry and a solution using mixture models. Applied Psychological Measurement, 46(3), 167–184.

https://doi.org/10.1177/01466216211066602

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104.

https://doi.org/10.1037/0021-9010.78.1.98

Cortina, J. M., Sheng, Z., Keener, S. K., Keeler, K. R., Grubb, L. K., Schmitt, N., Tonidandel, S., Summerville, K. M., Heggestad, E. D., & Banks, G.

C. (2020). From alpha to omega and beyond! A look at the past, present, and (possible) future of psychometric soundness in the Journal of Applied Psychology. Journal of Applied Psychology, 105(12), 1351–1381. https://doi.org/10.1037/apl0000815

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.

Cronbach, L. J., Nageswari, R., & Gleser, G. C. (1963). Theory of generalizability: A liberation of reliability theory. The British Journal of

Statistical Psychology, 16(2), 137–163. https://doi.org/10.1111/j.2044-8317.1963.tb00206.x

Culpepper, S. A. (2013). The reliability and precision of total scores and IRT estimates as a function of polytomous IRT parameters and latent trait distribution. Applied Psychological Measurement, 37(3), 201–225. https://doi.org/10.1177/0146621612470210

Davenport, E. C., Davison, M. L., Liou, P-Y., & Love, Q. U. (2016). Easier said than done: Rejoinder on Sijtsma and on Green and Yang. Educational Measurement: Issues and Practice, 35(1), 6–10. https://doi.org/10.1111/emip.12106

Deng, L., & Chan, W. (2017). Testing the difference between reliability coefficients alpha and omega. Educational and Psychological Measurement, 77(2), 185–203. https://doi.org/10.1177/0013164416658325

DeVellis, R. F. (2003). Scale development. Theory and applications. Sage.

DiStefano, C., Shi, D., & Morgan, G. B. (2020). Collapsing categories is often more advantageous than modeling sparse data: Investigations in the CFA framework. Structural Equation Modeling, 28(2), 237–249. https://doi.org/10.1080/10705511.2020.1803073

Edwards, A. A., Joyner, K. J., & Schatschneider, C. (2021). A simulation study on the performance of different reliability estimation methods. Educational and Psychological Measurement, 81(6), 1–29. https://doi.org/10.1177/0013164421994184

Ellis, J. L. (2021). A test can have multiple reliabilities. Psychometrika, 86(4), 869–876. https://doi.org/10.1007/s11336-021-09800-2

Elosua, P., & Zumbo, B. D. (2008). Reliability coefficients for ordinal response scales. Psicothema, 20(4), 896–901.

Enders, C. K. (2010). Applied missing data analysis. Guilford.

Evers, A., Lucassen, W., Meijer, R., & Sijtsma, K. (2015). COTAN Review System for Evaluating Test Quality. https://psynip.nl/wp-content/uploads/2022/05/COTAN-review-system-forevaluating-test-quality.pdf

Evers, A., Muñiz, J., Hagemeister, C., Hstmælingen, A., Lindley, P., Sjöberg, A., & Bartram, D. (2013). Assessing the quality of tests: Revision of the EFPA review model. Psicothema, 25(3), 283–291. https://doi.org/10.7334/psicothema2013.97

Ferrando, P. J., & Lorenzo-seva, U. (2016). A note on improving EAP trait estimation in oblique factor-analytic and item response theory models. Psicológica, 37, 235–247.

Ferrando, P. J., & Lorenzo-Seva, U. (2018). Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and Psychological Measurement, 78(5), 762–780. https://doi.org/10.1177/0013164417719308

Ferrando, P. J., Lorenzo-seva, U., Hernández-Dorado, A., & Muñiz, J. (2022).

Decalogue for the factor analysis of test items. Psicothema, 34(1), 7–17.

https://doi.org/10.7334/psicothema2021.456

Ferrando, P. J., & Navarro-González, D. (2021). Reliability and external validity of personality test scores: The role of person and item error. Psicothema, 33(2), 259–267. https://doi.org/10.7334/psicothema2020.346

Flake, J. K., Pek, J., & Hehman, E. (2017). Construct validation in social and personality research: Current practice and recommendations. Social

Psychological and Personality Science, 8(4), 370–378. https://doi.org/10.1177/1948550617693063

Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 3(4), 484–501. https://doi.org/10.1177/2515245920951747

Foldnes, N., & Grønneberg, S. (2020). Pernicious polychorics: The impact and detection of underlying non-normality. Structural Equation Modeling, 27(4), 525–543. https://doi.org/10.1080/10705511.2019.1673168

Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS

and ULS estimation. Structural Equation Modeling, 16(4), 625–641. https://doi.org/10.1080/10705510903203573

Foster, R. C. (2020). A generalized framework for classical test theory. Journal of Mathematical Psychology, 96, Article 102330.

https://doi.org/10.1016/j.jmp.2020.102330

Foster, R. C. (2021). KR20 and KR21 for some nondichotomous data (It’s not just Cronbach’s alpha). Educational and Psychological Measurement, 81(6), 1172–1202. https://doi.org/10.1177/0013164421992535

Gadermann, A. M., Guhn, M., & Zumbo, B. D. (2012). Estimating ordinal reliability for likert-type and ordinal item response data: A conceptual,

empirical, and practical guide. Practical Assessment, Research and Evaluation, 17(3), 1–13.

Gallucci, M., & Jentschke, S. (2021). Semlj: Jamovi SEM Analysis [Computer software]. https://semlj.github.io

García-Garzón, E., Nieto, M. D., Garrido, L. E., & Abad, F. J. (2020). Bi-factor exploratory structural equation modeling done right: using the slidapp application. Psicothema, 32(4), 607–614. https://doi.org/10.7334/psicothema2020.179

Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), 1–26. https://doi.org/10.1371/journal.pone.0174035

Goodboy, A. K., & Martin, M. M. (2020). Omega over alpha for reliability estimation of unidimensional communication measures. Annals of the

International Communication Association, 44(4), 422–439. https://doi.org/10.1080/23808985.2020.1846135

Graham, J. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability. What they are and how to use them. Educational and Psychological Measurement, 66(6), 930–944. https://doi.org/10.1177/0013164406288165

Green, S. B., & Hershberger, S. L. (2000). Correlated errors in true score models and their effect on coefficient alpha. Structural Equation Modeling, 7(2), 251–270. https://doi.org/10.1207/S15328007SEM0702_6

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74(1), 155–167. https://doi.org/10.1007/s11336-008-9099-3

Green, S. B., & Yang, Y. (2015). Evaluation of dimensionality in the assessment of internal consistency reliability: coefficient alpha and omega coefficients. Educational Measurement: Issues and Practice, 34(4), 14–20. https://doi.org/10.1111/emip.12100

Greenacre, M. (2017). Correspondence analysis in practice (3rd ed.). Chapman & Hall. https://doi.org/10.1201/9781315369983

Gu, F., Little, T. D., & Kingston, N. M. (2013). Misestimation of reliability using coefficient alpha and structural equation modeling when assumptions of tau-equivalence and uncorrelated errors are violated. Methodology, 9(1), 30–40. https://doi.org/10.1027/1614-2241/a000052

Gulliksen, H. (1950). Theory of mental tests. Wiley. Hallquist, M., Willey, J., van Lissa, C., & Morillo, D. (2022). MplusAutomation:

an R package for facilitating large-scale latent variable analyses in Mplus (1.1.0) [Computer software].

https://michaelhallquist.github.io/MplusAutomation/

Hayes, A. F., & Coutts, J. J. (2020). Use omega rather than Cronbach’s alpha for estimating reliability. But… Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629

Hernández, A., Ponsoda, V., Muñiz, J., Prieto, G., & Elosua, P. (2016). Revisión del modelo para evaluar la calidad de los tests utilizados en España [Assessing the quality of tests in spain: revision of the spanish test review model]. Papeles Del Psicólogo, 37(3), 192–197.

Hoekstra, R., Vugteveen, J., Warrens, M. J., & Kruyen, P. M. (2019). An empirical analysis of alleged misunderstandings of coefficient alpha.

International Journal of Social Research Methodology, 22(4), 351–364. https://doi.org/10.1080/13645579.2018.1547523

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applications. Routledge.

Hussey, I., & Hughes, S. (2020). Hidden invalidity among 15 commonly used measures in social and personality psychology. Advances in Methods and Practices in Psychological Science, 3(2), 166–184. https://doi.org/10.1177/2515245919882903

IBM Corp. (2021). IBM SPSS Statistics for Windows, Version 28.0 (28.0) [Computer software]. IBM Corp. JASP Team. (2022). JASP (Jeffreys’s Amazing Statistics Program) (0.16.2) [Computer software]. https://jasp-stats.org/

Kalkbrenner, M. T. (2021). Alpha, omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Counseling Outcome Research and Evaluation, Published. Advance online publication, 1–12. https://doi.org/10.1080/21501378.2021.1940118

Kim, S., Lu, Z., & Cohen, A. S. (2020). Reliability for tests with items having different numbers of ordered categories. Applied Psychological

Measurement, 44(2), 137–149. https://doi.org/10.1177/0146621619835498

Kim, Seonghoon, & Feldt, L. S. (2010). The estimation of the IRT reliability coefficient and its lower and upper bounds, with comparisons to CTT

reliability statistics. Asia Pacific Education Review, 11(2), 179–188. https://doi.org/10.1007/s12564-009-9062-8

Komperda, R., Pentecost, T. C., & Barbera, J. (2018). Moving beyond alpha: A primer on alternative sources of single-administration reliability evidence for quantitative chemistry education research. Journal of Chemical Education, 95(9), 1477–1491. https://doi.org/10.1021/acs.jchemed.8b00220

Lai, M. H. C. (2021). Composite reliability of multilevel data: It’s about observed scores and construct meanings. Psychological Methods, 26(1),

–102. https://doi.org/10.1037/met0000287

Lance, C., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff criteria: What did they really say? Organizational Research Methods, 9(2), 202–220. https://doi.org/10.1177/1094428105284919

Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada [The exploratory factor analysis of the items: a practical guide, revised and updated]. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Addison Wesley.

Lorenzo-Seva, U., & Ferrando, P. J. (2012). TETRA-COM: A comprehensive SPSS program for estimating the tetrachoric correlation. Behavior Research Methods, 44(4), 1191–1196. https://doi.org/10.3758/s13428-012-0200-6

Lorenzo-Seva, U., & Ferrando, P. J. (2015). POLYMAT-C: A comprehensive SPSS program for computing the polychoric correlation matrix. Behavior Research Methods, 47(3), 884–889. https://doi.org/10.3758/s13428-014-0511-x

McCrae, R. R. (2015). A more nuanced view of reliability: specificity in the trait hierarchy. Personality and Social Psychology Review, 19(2), 97–112. https://doi.org/10.1177/1088868314541857

McDonald, R. P. (1999). Test theory: a unified treatment. Lawrence Erlbaum Associates.

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods, 23(3), 412–433. https://dx.doi.org/10.1037/met0000144

Muñiz, J. (2018). Introducción a las Teorías Psicométricas [Introduction to Psychometric Theories]. Pirámide.

Muñiz, J., & Fonseca-Pedrero, E. (2019). Ten steps for test development. Psicothema, 31(1), 7–16. https://doi.org/10.7334/psicothema2018.291

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2016). Regression and mediation analysis using Mplus. Muthén & Muthén.

Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide (8th edition).

Muthén & Muthén. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. McGraw-Hill. Olvera, O. L., Kroc, E., & Zumbo, B. D. (2020). The role of item distributions on reliability estimation: the case of Cronbach’s coefficient alpha. Educational and Psychological Measurement, 80(5), 825–846. https://doi.org/10.1177/0013164420903770

Oosterwijk, P. R., van der Ark, L. A., & Sijtsma, K. (2019). Using confidence intervals for assessing reliability of real tests. Assessment, 26(7), 1207–1216. https://doi.org/10.1177/1073191117737375

Pfadt, J. M., van den Bergh, D., Klaas, S., Moshagen, M., & Wagenmakers, E.-J. (2022). Bayesian estimation of single-test reliability coefficients

bayesian estimation of single-test reliability coefficients. 57(4), 620–641.

Multivariate Behavioural Research, 57(4). https://doi.org/10.1080/00273171.2021.1891855

Pons, J., Viladrich, C., & Ramis, Y. (2017). Examining the big three of coping in adolescent athletes using network analysis. Revista de Psicologia Del Deporte, 26, 68–74.

Prinsen, C. A. C., Mokkink, L. B., Bouter, L. M., Alonso, J., Patrick, D. L., de Vet, H. C. W., & Terwee, C. B. (2018). COSMIN guideline for systematic

reviews of patient-reported outcome measures. Quality of Life Research, 27(5), 1147–1157. https://doi.org/10.1007/s11136-018-1798-3

R Core Team. (2021). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing.

https://www.r-project.org/

Raykov, T. (1997a). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173–184.

https://doi.org/0803973233

Raykov, T. (1997b). Scale reliability, Cronbach’s coefficient alpha, and violations of essential tau-equivalence with fixed congeneric components. Multivariate Behavioral Research, 32(4), 329–353. https://doi.org/10.1207/s15327906mbr3204_2

Raykov, T. (2001). Bias of coefficient alpha for fixed congeneric measures with correlated errors. Applied Psychological Measurement, 25(1), 69–76. https://doi.org/10.1177/01466216010251005

Raykov, T. (2004). Point and interval estimation of reliability for multiplecomponent measuring instruments via linear constraint covariance structure modeling. Structural Equation Modeling, 11(3), 452–483. https://doi.org/10.1207/s15328007sem1103

Raykov, T. (2007). Reliability of multiple-component measuring instruments: Improved evaluation in repeated measure designs. British Journal of Mathematical and Statistical Psychology, 60(1), 119–136. https://doi.org/10.1348/000711006X100464

Raykov, T., Anthony, J. C., & Menold, N. (2022). On the importance of coefficient alpha for measurement research: loading equality is not necessary for alpha’s utility as a scale reliability index. Educational and Psychological Measurement. Advance online publication.

https://doi.org/10.1177/00131644221104972

Raykov, T., Dimitrov, D. M., & Asparouhov, T. (2010). Evaluation of scale reliability with binary measures using latent variable modeling. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 265–279. https://doi.org/10.1080/10705511003659417

Raykov, T., & Marcoulides, G. A. (2015). A direct latent variable modeling based method for point and interval estimation of coefficient alpha.

Educational and Psychological Measurement, 75(1), 146–156. https://doi.org/10.1177/0013164414526039

Raykov, T., & Marcoulides, G. A. (2016). Scale reliability evaluation under multiple assumption violations. Structural Equation Modeling: A

Multidisciplinary Journal, 23(2), 302–313. https://doi.org/10.1080/10705511.2014.938597

Raykov, T., & Marcoulides, G. A. (2019). Thanks coefficient alpha, we still need you! Educational and Psychological Measurement, 79(1), 200–210. https://doi.org/10.1177/0013164417725127

Raykov, T., Marcoulides, G. A., Harrison, M., & Menold, N. (2019). Multiplecomponent measurement instruments in heterogeneous populations: Is there a single coefficient alpha? Educational and Psychological Measurement, 79(2), 399–412. https://doi.org/10.1177/0013164417733305

Revelle, W. (2022). psych: Procedures for personality and pscychological research (2.2.5) [Computer software]. https://personality-project.org/r/psych/

Revelle, W., & Condon, D. M. (2019). Reliability from α to ω: A tutorial. Psychological Assessment, 31(12), 1395–1411.

https://doi.org/10.1037/pas0000754

Revelle, W., & Zinbarg, R. E. (2009). Coefficient alpha, beta, omega, and the GLB: Comment on Sitjsma. Psychometrika, 74(1), 145–154.

Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016a). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223–237. https://doi.org/10.1080/00223891.2015.1089249

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016b). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological

Methods, 21(2), 137–150. https://doi.org/10.1037/met0000045

Sánchez-Meca, J. (2022, July 20). Meta-análisis de generalización de la fiabilidad [Reliability generalization Meta-analysis][Simposium]. XVII

Congreso de Metodología de Las Ciencias Sociales y de La Salud.

Sánchez-Meca, Julio, Marín-Martínez, F., López-López, J. A., Núñez- Núñez, R. M., Rubio-Aparicio, M., López-García, J. J., López-Pina, J. A.,

Blázquez-Rincón, D. M., López-Ibáñez, C., & López-Nicolás, R. (2021). Improving the reporting quality of reliability generalization meta-analyses: The REGEMA checklist. Research Synthesis Methods, 12(4), 516–536. https://doi.org/10.1002/jrsm.1487

Savalei, V., & Reise, S. P. (2019). Don’t forget the model in your model-based reliability coefficients: A reply to McNeish (2018). Collabra: Psychology, 5(1), 36. https://doi.org/10.1525/collabra.247

Savalei, V., & Rhemtulla, M. (2013). The performance of robust test statistics with categorical data. British Journal of Mathematical and Statistical Psychology, 66(2), 201–223. https://doi.org/10.1111/j.2044-8317.2012.02049.x

Scherer, R., & Teo, T. (2020). A tutorial on the meta-analytic structural equation modeling of reliability coefficients. Psychologycal Methods, 25(6), 747–775. https://doi.org/10.1037/14262-002

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353.

Shi, D., Lee, T., Fairchild, A. J., & Maydeu-Olivares, A. (2020). Fitting ordinal factor analysis models with missing data: A comparison between

pairwise deletion and multiple imputation. Educational and Psychological Measurement, 80(1), 41–66. https://doi.org/10.1177/0013164419845039

Sideridis, G. D., Tsaousis, I., & Al-Sadaawi, A. (2019). An application of reliability estimation in longitudinal designs through modeling item-specific error variance. Educational and Psychological Measurement, 79(6), 1038–1063. https://doi.org/10.1177/0013164419843162

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107–120.

https://doi.org/10.1007/s11336-008-9101-0

Sijtsma, K., & Pfadt, J. M. (2021). Part II: On the use, the misuse, and the very limited usefulness of Cronbach’s alpha: discussing lower bounds and correlated errors. Psychometrika, 86, 843–860. https://doi.org/10.1007/s11336-021-09789-8

Slaney, K. L., Tkatchouk, M., Gabriel, S. M., & Maraun, M. D. (2009). Psychometric assessment and reporting practices: Incongruence between

theory and practice. Journal of Psychoeducational Assessment, 27(6), 465–476. https://doi.org/10.1177/0734282909335781

StataCorp. (2021). Stata statistical software. (Release 17) [Computer software]. StataCorp LLC. https://www.stata.com/

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80(1), 99–103. Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting

research instruments in science education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2

The jamovi project (2021). The jamovi project (v1.6) [Computer software]. https://www.jamovi.org

Thurstone, L. L. (1947). Multiple factor analysis. University of Chicago Press

Viladrich, C., y Angulo-Brunet, A. (2019). Reliability of Essentially Unidimensional Measures Derived From Bifactor Modeling With R, Mplus

and Stata. [Data set and syntax]. Universitat Autònoma de Barcelona. https://ddd.uab.cat/record/205936

Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). A journey around alpha and omega to estimate internal consistency reliability. Annals of Psychology, 33(3), 755–782. https://doi.org/10.6018/analesps.33.3.268401

Viladrich, C., Angulo-Brunet, A., & Doval, E. (2019). Mplus and stata tools to calculate the internal consistency reliability coefficients alpha and omega [Data set and syntax]. Universitat Autònoma de Barcelona. https://ddd.uab.cat/record/205870

Weijters, B., Geuens, M., & Schillewaert, N. (2009). The proximity effect: The role of inter-item distance on reverse-item bias. International Journal of Research in Marketing, 26(1), 2–12. https://doi.org/10.1016/j.ijresmar.2008.09.003

Xiao, L., & Hau, K.T. (2022). Performance of coefficient alpha and its alternatives: Effects of different types of non-normality. Educational and

Psychological Measurement. Advance online publication. https://doi.org/10.1177/00131644221088240

Yang, Y., & Green, S. B. (2011). Coefficient alpha: A reliability coefficient for the 21st Century? Journal of Psychoeducational Assessment, 29(4), 377–392. https://doi.org/10.1177/0734282911406668

Yang, Y., & Green, S. B. (2015). Evaluation of structural equation modeling estimates of reliability for scales with ordered categorical items.

Methodology, 11(1), 23–34. https://doi.org/10.1027/1614-2241/a000087

Yang, Y., & Xia, Y. (2019). Categorical omega with small sample sizes via bayesian estimation: An alternative to frequentist estimators. Educational and Psychological Measurement, 79(1), 19–39. https://doi.org/10.1177/0013164417752008

Ziegler, M. (2020). Psychological test adaptation and development – How papers are structured and why. Psychological Test Adaptation and Development. Advance online publication. https://doi.org/10.1027/2698-1866/a000002

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and Mcdonald’s ωH: their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123–133. https://doi.org/10.1007/s11336-003-0974-7

Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6(1), 21–29. https://doi.org/10.1107/S0907444909031205

Zumbo, B. D., & Kroc, E. (2019). A measurement is a choice and Stevens’ scales of measurement do not help make it: A response to Chalmers. Educational and Psychological Measurement, 79(6), 1184–1197. https://doi.org/10.1177/0013164419844305