Combined Effects of Early Life Stress and Prolonged Exposure to Western Diet on Emotional Responses and Gut Microbiota
PDF (Español (España))

Keywords

Early life stress
Anxiety
Depression
Microbiota
High-fat high-sugar diet Estrés vital temprano
Ansiedad
Depresión
Microbiota
Dieta rica en grasas y azúcares

How to Cite

López-Taboada, I., Arboleya, S., Sal-Sarria, S., Gueimonde, M., González- Pardo, H., & Conejo, N. M. (2024). Combined Effects of Early Life Stress and Prolonged Exposure to Western Diet on Emotional Responses and Gut Microbiota. Psicothema, 36(2), 133–144. Retrieved from https://reunido.uniovi.es/index.php/PST/article/view/21247

Abstract

Background: Exposure to early life stress (ELS) and maternal consumption of a high-fat and high-sugar diet can have detrimental effects on adult emotional responses. The microbiota and gut-brain axis have been proposed as playing a mediating role in the regulation of stress and emotion. Method: Young male rats were exposed to maternal separation (MS) together with maternal and postnatal consumption of a HFS diet (45%kcal saturated fat, 17%kcal sucrose). Anxiety-like behaviour was evaluated using an elevated zero-maze, and depression-like behaviour using the forced-swim and sucrose preference tests. Microbiota composition and derived metabolites were also analysed in faecal samples using a gas chromatograph and mass spectrometry. Results: Combined exposure to MS and lifelong consumption of a HFS diet partially reversed the abnormal anxiety-like and depression-like behaviours in early adulthood caused by each adverse factor alone. Diet composition had a greater negative impact than ELS exposure on the gut microbiota, and both environmental factors interacted with microbiota composition partially counteracting their negative effects. Conclusions: The effects of exposure to early life stress and a HFS diet independently are partially reversed after the combination of both factors. These results suggest that ELS and diet interact to modulate adult stress response and gut microbiota.

PDF (Español (España))

References

Abenavoli, L., Scarpellini, E., Colica, C., Boccuto, L., Salehi, B., Sharifi-Rad, J., Aiello, V., Romano, B., De Lorenzo, A., Izzo, A. A., & Capasso, R. (2019). Gut microbiota and obesity: A role for probiotics. Nutrients, 11(11), Article 2690. https://doi.org/10.3390/nu11112690

Adan, R.A.H., van der Beek, E.M., Buitelaar, J.K., Cryan, J.F., Hebebrand, J., Higgs, S., Schellekens, H., & Dickson, S.L., (2019). Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 29(12), 1321–1332. https://doi.org/10.1016/j. euroneuro.2019.10.011

Agorastos, A., Pervanidou, P., Chrousos, G.P., & Baker, D.G. (2019). Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Frontiers in Psychiatry, 10, Article 118. https://doi.org/10.3389/fpsyt.2019.00118

Anyan, J., & Amir, S. (2018). Too depressed to swim or too afraid to stop? A reinterpretation of the forced swim test as a measure of anxiety-like behavior. Neuropsychopharmacology, 43, 931–933. https://doi.org/10.1038/ NPP.2017.260

Armario, A. (2021). The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neuroscience and Biobehavioral Reviews, 128, 74–86. https://doi.org/10.1016/j.neubiorev.2021.06.014

Aslani, S., Vieira, N., Marques, F., Costa, P.S., Sousa, N., & Palha, J.A. (2015). The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Translational Psychiatry, 5(11), Article e684. https://doi.org/10.1038/ tp.2015.178

Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., & Caporaso, J.G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57–59. https://doi.org/10.1038/nmeth.2276

Cao, B., Wang, J., Zhang, X., Yang, X., Poon, D.C.-H., Jelfs, B., Chan, R.H.M., Wu, J.C.-Y., & Li, Y., (2016). Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat. Neurobiol. Learning & Memory, 136, 74–85. https://doi.org/10.1016/j.nlm.2016.09.015

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pẽa, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336. https://doi.org/10.1038/ nmeth.f.303

Chen, L.P., Murad, M.H., Paras, M.L., Colbenson, K.M., Sattler, A.L., Goranson, E.N., Elamin, M.B., Seime, R.J., Shinozaki, G., Prokop, L.J., & Zirakzadeh, A. (2010). Sexual abuse and lifetime diagnosis of psychiatric disorders: Systematic review and meta-analysis. Mayo Clinic Proceedings, 85, 618–629. https://doi.org/10.4065/mcp.2009.0583

Commons, K.G., Cholanians, A.B., Babb, J.A., & Ehlinger, D.G. (2017). The rodent forced swim test measures stress-coping strategy, not depression- like behavior. ACS Chemical Neuroscience, 8(5), 955–960. https://doi. org/10.1021/acschemneuro.7b00042

Cryan, J.F., O’riordan, K.J., Cowan, C.S.M., Sandhu, K. V., Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K.E., Jaggar, M., Long-Smith, C.M., Lyte, J.M., Martin, J.A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., O’connor, R., Cruz-Pereira, J.S., Peterson, V.L., Rea, K., Ritz, N.L., Sherwin, E., Spichak, S., Teichman, E.M., van de Wouw, M., Ventura-Silva, A.P., Wallace-Fitzsimons, S.E., Hyland, N., Clarke, G., & Dinan, T.G. (2019). The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018

Daniels, W.M.U., Pietersen, C.Y., Carstens, M.E., & Stein, D.J. (2004). Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metabolical Brain Disease, 19(1-2), 3–14. https://doi.org/10.1023/b:mebr.0000027412.19664.b3

de la Cuesta-Zuluaga, J., Mueller, N.T., Álvarez-Quintero, R., Velásquez- Mejía, E.P., Sierra, J.A., Corrales-Agudelo, V., Carmona, J.A., Abad, J.M., & Escobar, J.S. (2019). Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients, 11(1), 51. https://doi. org/10.3390/nu11010051

Edgar, R.C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998. https://doi.org/10.1038/ nmeth.2604

Enqi, W., Jingzhu, S., Lingpeng, P., & Yaqin, L. (2021). Comparison of the gut microbiota disturbance in rat models of irritable bowel syndrome induced by maternal separation and multiple early-life adversity. Frontiers in Cellular and Infection Microbiology, 10, Article 581974. https://doi.org/10.3389/ fcimb.2020.581974

Fernandes, D.J., Spring, S., Roy, A.R., Qiu, L.R., Yee, Y., Nieman, B.J., Lerch, J.P., & Palmert, M.R. (2021). Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Translational Psychiatry, 11(1), Article 149. https://doi.org/10.1038/s41398-021-01274-1

Francis, H., & Stevenson, R. (2013). The longer-term impacts of Western diet on human cognition and the brain. Appetite, 63, 119-128. https://doi.org/10.1016/j.appet.2012.12.018

González-Pardo, H., Arias, J.L., Gómez-Lázaro, E., Taboada, I.L., & Conejo, N.M. (2020). Sex-specific effects of early life stress on brain mitochondrial function, monoamine levels and neuroinflammation. Brain Sciences, 10, 1–17. https://doi.org/10.3390/brainsci10070447

Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S.K., Sodergren, E., Methé, B., DeSantis, T.Z., Petrosino, J.F., Knight, R., & Birren, B.W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21, 494–504. https://doi.org/10.1101/ gr.112730.110

Johnson, S.A., Javurek, A.B., Painter, M.S., Murphy, C.R., Conard, C.M., Gant, K.L., Howald, E.C., Ellersieck, M.R., Wiedmeyer, C.E., Vieira- Potter, V.J., & Rosenfeld, C.S. (2017). Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. Journal of Developmental Origins of Health and Disease, 8(1), 75–88. https://doi.org/10.1017/S2040174416000490

Karl, P.J., Hatch, A.M., Arcidiacono, S.M., Pearce, S.C., Pantoja-Feliciano, I.G., Doherty, L.A., & Soares, J.W. (2018). Effects of psychological, environmental and physical stressors on the gut microbiota. Frontiers in Microbiology, 9, Article 2013. https://doi.org/10.3389/fmicb.2018.02013

Lippmann, M., Bress, A., Nemeroff, C.B., Plotsky, P.M., & Monteggia, L.M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25, 3091– 3098. https://doi.org/10.1111/j.14609568.2007.05522.x

Liu, R. T., Walsh, R. F. L., & Sheehan, A. E. (2019). Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and biobehavioral reviews, 102, 13–23. https://doi.org/10.1016/j.neubiorev.2019.03.023

López-Taboada, I., González-Pardo, H., & Conejo, N. M. (2020). Western diet: implications for brain function and behavior. Frontiers in Psychology, 11, Article 564413. https://doi.org/10.3389/fpsyg.2020.564413

Magoč, T., & Salzberg, S.L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507

Malesza, I.J., Malesza, M., Walkowiak, J., Mussin, N., Walkowiak, D., Aringazina, R., Bartkowiak-Wieczorek, J., & Mądry, E. (2021). High- fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells, 10(11), Article 3164. https://doi.org/10.3390/cells10113164

Maniam, J., Antoniadis, C.P., Le, V., & Morris, M.J. (2016). A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers. Psychoneuroendocrinology, 68, 202–209. https://doi.org/10.1016/j.psyneuen.2016.03.007

Maniam, J., & Morris, M.J. (2010). Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology, 35, 717–728. https://doi.org/10.1016/j. psyneuen.2009.10.013

Moris, G., Arboleya, S., Mancabelli, L., Milani, C., Ventura, M., de los Reyes- Gavilán, C.G., & Gueimonde, M. (2018). Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports, 8(1), Article 14384. https://doi.org/10.1038/s41598-018-32700-y

Morris, M.J., Beilharz, J.E., Maniam, J., Reichelt, A.C., & Westbrook,

R.F. (2015). Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neuroscience and Biobehavioral Reviews, 58, 36–45. https://doi. org/10.1016/j.neubiorev.2014.12.002

Nemeroff, C.B. (2016). Paradise lost: The neurobiological and clinical consequences of child abuse and neglect. Neuron, 89, 892–909. https://doi.org/10.1016/j.neuron.2016.01.019

O’Mahony, S.M., McVey Neufeld, K.A., Waworuntu, R. V., Pusceddu, M.M., Manurung, S., Murphy, K., Strain, C., Laguna, M.C., Peterson, V.L., Stanton, C., Berg, B.M., Dinan, T.G., & Cryan, J.F. (2020). The enduring effects of early-life stress on the microbiota–gut–brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend. European Journal of Neuroscience, 51, 1042–1058. https://doi.org/10.1111/ejn.14514

Oriach, C.S., Robertson, R.C., Stanton, C., Cryan, J.F., & Dinan, T.G. (2016). Food for thought: The role of nutrition in the microbiota-gut-brain axis. Clinical Nutrition Experimental, 6, 25-35. https://doi.org/10.1016/j. yclnex.2016.01.003

Paulson, J.N., Colin Stine, O., Bravo, H.C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10, 1200–1202. https://doi.org/10.1038/nmeth.2658

Pini, R.T.B., Ferreira do Vales, L.D.M., Braga Costa, T.M., & Almeida, S.S. (2017). Effects of cafeteria diet and high fat diet intake on anxiety, learning and memory in adult male rats. Nutritional Neuroscience, 20, 396–408. https://doi.org/10.1080/1028415x.2016.1149294

Porsolt, R.D., Bertin, A., & Jalfre, M. (1978). “Behavioural despair” in rats and mice: Strain differences and the effects of imipramine. European Journal of Pharmacology, 51, 291–294. https://doi.org/10.1016/0014-2999(78)90414-4

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F.O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue), D590-D596. https://doi.org/10.1093/nar/gks1219

Rabasa, C., Winsa-Jörnulf, J., Vogel, H., Babaei, C.S., Askevik, K., & Dickson,

S.L. (2016). Behavioral consequences of exposure to a high fat diet during the post-weaning period in rats. Hormones and Behavior, 85, 56–66. https:// doi.org/10.1016/j.yhbeh.2016.07.008

Rincel, M., Aubert, P., Chevalier, J., Grohard, P.A., Basso, L., Monchaux de Oliveira, C., Helbling, J.C., Lévy, É., Chevalier, G., Leboyer, M., Eberl, G., Layé, S., Capuron, L., Vergnolle, N., Neunlist, M., Boudin, H., Lepage, P., & Darnaudéry, M. (2019). Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain, Behavior, and Immunity, 80, 179–192. https://doi.org/10.1016/j.bbi.2019.03.006

Rincel, M., Lépinay, A.L., Delage, P., Fioramonti, J., Théodorou, V.S., Layé, S., & Darnaudéry, M. (2016). Maternal high-fat diet prevents developmental programming by early-life stress. Translational Psychiatry, 6(11), Article e966. https://doi.org/10.1038/tp.2016.235

Rincel, M., Lépinay, A.L., Janthakhin, Y., Soudain, G., Yvon, S., Da Silva, S., Joffre, C., Aubert, A., Séré, A., Layé, S., Theodorou, V., Ferreira, G., & Darnaudéry, M. (2018). Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats. Brain Structure and Function, 223, 883–895. https://doi.org/10.1007/s00429-017-1526-8

Rincel, M., Olier, M., Minni, A., de Oliveira, C.M., Matime, Y., Gaultier, E., Grit, I., Helbling, J.C., Costa, A.M., Lépinay, A., Moisan, M.P., Layé, S., Ferrier, L., Parnet, P., Theodorou, V., & Darnaudéry, M. (2019). Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation. Psychopharmacology (Berlin), 236, 1583–1596. https://doi.org/10.1007/ s00213-019-05252-w

Romaní-Pérez, M., Lépinay, A.L., Alonso, L., Rincel, M., Xia, L., Fanet, H., Caillé, S., Cador, M., Layé, S., Vancassel, S., & Darnaudéry, M. (2017). Impact of perinatal exposure to high-fat diet and stress on responses to nutritional challenges, food-motivated behaviour and mesolimbic dopamine function. International Journal of Obesity, 41, 502–509. https://doi.org/10.1038/ijo.2016.236

Salazar, N., González, S., Nogacka, A.M., Rios-Covián, D., Arboleya, S., Gueimonde, M., & de los Reyes-Gavilán, C.G. (2019). Microbiome: Effects of ageing and diet. Current Issues in Molecular Biology, 36, 33–62. https:// doi.org/10.21775/cimb.036.033

Sasaki, A., de Vega, W., Sivanathan, S., St-Cyr, S., & McGowan, P. (2014). Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. Neuroscience, 272, 92–101. https://doi.org/10.1016/j. neuroscience.2014.04.012

Sasaki, A., de Vega, W.C., St-Cyr, S., Pan, P., & McGowan, P.O. (2013). Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience, 240, 1–12. https://doi.org/10.1016/j. neuroscience.2013.02.044

Scheggi, S., De Montis, M.G., & Gambarana, C. (2018). Making sense of rodent models of anhedonia. The International Journal of Psychopharmacology, 21(11), 1049-1065 https://doi.org/10.1093/ijnp/pyy083

Shepherd, J.K., Grewal, S.S., Fletcher, A., Bill, D.J., & Dourish, C.T. (1994). Behavioural and pharmacological characterisation of the elevated “zero- maze” as an animal model of anxiety. Psychopharmacology (Berlin), 116, 56–64. https://doi.org/10.1007/BF02244871

Silva, Y.P., Bernardi, A., & Frozza, R.L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology (Lausanne), 11, Article 25. https://doi.org/10.3389/ fendo.2020.00025

Souto, T. dos S., Nakao, F.S.N., Giriko, C.Á., Dias, C.T., Cheberle,

A.I. do P., Lambertucci, R.H., & Mendes-da-Silva, C. (2020). Lard- rich and canola oil-rich high-fat diets during pregnancy promote rats’ offspring neurodevelopmental delay and behavioral disorders. Physiology & Behavior, 213, Article 112722. https://doi.org/10.1016/j.physbeh.2019.112722

Tsan, L., Décarie-Spain, L., Noble, E.E., & Kanoski, S.E. (2021). Western diet consumption during development: setting the stage for neurocognitive dysfunction. Frontiers in Neuroscience, 15, Article 632312. https://doi.org/10.3389/fnins.2021.632312

van Bodegom, M., Homberg, J.R., & Henckens, M.J.A.G. (2017). Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Frontiers in Cellular Neuroscience, 11, Article 87. https://doi.org/10.3389/ fncel.2017.00087

van de Wouw, M., Boehme, M., Lyte, J.M., Wiley, N., Strain, C., O’Sullivan, O., Clarke, G., Stanton, C., Dinan, T.G., & Cryan, J.F. (2018). Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. Journal of Physiology, 596, 4923–4944. https://doi.org/10.1113/ JP276431

Wang, D., Levine, J.L.S., Avila-Quintero, V., Bloch, M., & Kaffman, A. (2020). Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Translational Psychiatry, 10(1), Article 174. https://doi.org/10.1038/s41398-020-0856-0

Wang, S., Huang, M., You, X., Zhao, J., Chen, L., Wang, L., Luo, Y., & Chen, Y. (2018). Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Scientific Reports, 8(1), Article 13037. https://doi.org/10.1038/s41598-018-31353-1

Winther, G., Elfving, B., Müller, H.K., Lund, S., & Wegener, G. (2018). Maternal high-fat diet programs offspring emotional behavior in adulthood. Neuroscience, 388, 87–101. https://doi.org/10.1016/j.neuroscience.2018.07.014

Yang, Y., Duan, C., Huang, L., Xia, X., Zhong, Z., Wang, B., Wang, Y., & Ding, W. (2020). Juvenile high–fat diet–induced senescent glial cells in the medial prefrontal cortex drives neuropsychiatric behavioral abnormalities in mice. Behavioural Brain Research, 395, Article 112838. https://doi.org/10.1016/j.bbr.2020.112838