Resumen
Antecedentes: El diseño de medidas repetidas es uno de los más usados en ciencias sociales y de la salud. Aunque hay otras alternativas más avanzadas, el análisis de varianza de medidas repetidas (ANOVA-MR) sigue siendo el procedimiento más empleado para analizar las diferencias de medias. El impacto de la violación de la normalidad ha sido muy estudiado en el ANOVA intersujeto, pero los estudios son muy escasos en el ANOVA-MR. Por ello, el objetivo de este trabajo es realizar dos estudios de simulación Monte Carlo para analizar el error de Tipo I y la potencia cuando se incumple este supuesto bajo el cumplimiento de la esfericidad. Método: El estudio 1 incluye 20 distribuciones, tanto conocidas como desconocidas, manipulando el número de medidas repetidas (3, 4, 6 y 8) y el tamaño muestral (de 10 a 300). El estudio 2 incluye diferentes distribuciones en cada medida repetida. Las distribuciones analizadas representan desviación leve, moderada y severa de la normalidad. Resultados: En general, los resultados muestran que tanto el error Tipo I como la potencia del estadístico F no se alteran con la violación de la normalidad. Conclusiones: El ANOVA-MR es generalmente robusto a la no normalidad cuando la esfericidad se satisface.
Citas
Armstrong, R. (2017). Recommendations for analysis of repeatedmeasures designs: Testing and correcting for sphericity and use of
MANOVA and mixed model analysis. Ophthalmic & Physiological Optics, 37(5), 585–593. https://doi.org/1.1111/opo.12399.
Arnau, J., Bendayan, R., Blanca, M. J., & Bono, R. (2014). Should we rely on the Kenward–Roger approximation when using linear mixed
models if the groups have different distributions? British Journal of Mathematical and Statistical Psychology, 67(3), 408–429. https://doi.org/10.1111/bmsp.12026
Arnau, J., Bono, R., Blanca, M. J., & Bendayan, R. (2012). Using the linear mixed model to analyze nonnormal data distributions in longitudinal
designs. Behavior Research Methods, 44, 1224–1238. https://doi.org/10.3758/s13428-012-0196-y
Bathke, A., Schabenberger, O., Tobias, R., & Madden, L. (2009). Greenhouse-Geisser adjustment and the ANOVA-type statistic:
Cousins or twins? The American Statistician, 63(3), 239–246. https://doi.org/1.1198/tast.2009.08187
Bendayan, R., Arnau, J., Blanca, M. J., & Bono, R. (2014). Comparison of the procedures of Fleishman and Ramberg et al. for generating
non-normal data in simulation studies. Anales de Psicología, 30(1), 364–371. https://doi.org/10.6018/analesps.30.1.135911
Berkovits, I., Hancock, G., & Nevitt, J. (2000). Bootstrap resampling approaches for repeated measure designs: Relative robustness to
sphericity and normality violations. Educational and Psychological Measurement, 60(6), 877–892. https://doi.org/1.1177/00131640021970961
Blanca, M. J. (2004). Alternativas de análisis estadístico en los diseños de medidas repetidas [Approaches to the statistical analysis of repeated measures designs]. Psicothema, 16(3), 509–518.
Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29(4),
–557. https://doi.org/1.7334/psicothema2016.383
Blanca, M. J., Alarcón, R., & Bono, R. (2018). Current practices in data analysis procedures in psychology: What has changed? Frontiers in
Psychology, 9, Article 2558. https://doi.org/10.3389/fpsyg.2018.02558
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology:
European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78–84. https://doi.org/10.1027/1614-2241/a000057
Bono, R., Arnau, J., Blanca, M. J., & Alarcón, R. (2016). Sphericity estimation bias for repeated measures designs in simulation studies.
Behavior Research Methods, 48(4), 1621–1630. https://doi.org/10.3758/s13428-015-0673-1
Bono, R., Arnau, J., & Vallejo, G. (2010). Modelización de diseños splitplot y estructuras de covarianza no estacionarias: un estudio de
simulación [Modeling split-plot data and nonstationary covariance structures: A simulation study]. Escritos de Psicología - Psychological
Writings, 3(3), 1–7. https://doi.org/10.5231/Psy.Writ.2010.2903
Bono, R., Blanca, M. J., Arnau, J., & Gómez-Benito, J. (2017). Nonnormal distributions commonly used in health, education, and social
sciences: A systematic review. Frontiers in Psychology, 8, Article 1602. https://doi.org/10.3389/fpsyg.2017.01602
Bosley, T. (2019). Comparative power of the Friedman, Neave and Worthington match, Skillings-Mack, trimmed means repeated
measures ANOVA, and bootstrap trimmed means repeated measures ANOVA tests [Doctoral dissertation, Wayne State University].
https://digitalcommons.wayne.edu/oa_dissertations/2318/
Box, G. E. P. (1953). Non-normality on test on variance. Biometrika, 40(3–4), 318–335. https://doi.org/10.1093/biomet/40.3-4.318
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144–152. https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
Cooper, J. A., & Garson, G. D. (2016). Power analysis. Statistical Associates Blue Book Series.
Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. Springer.
De Livera, A., Zaloumis, S., & Simpson, J. (2014). Models for the analysis of repeated continuous outcome measures in clinical trials: Analysis
of repeated continuous measures. Respirology, 19(2), 155–161. https://doi.org/1.1111/resp.12217
Fernández, P., Livacic-Rojas, P., & Vallejo, G. (2007). Cómo elegir la
mejor prueba estadística para analizar un diseño de medidas repetidas
[How to choose the best statistical analysis for analyzing a repeated
measures design]. International Journal of Clinical Psychology, 7(1),
–175.
Fernández, P., Vallejo, G., Livacic-Rojas, P. E., & Tuero, E. (2010). Características y análisis de los diseños de medidas repetidas en
la investigación en España en los últimos 10 años [Characteristics and analysis of repeated measures designs used in research in Spain
over the last 10 years]. In M. J. Blanca et al. (coords.), Actas del XI
Congreso de Metodologías de las Ciencias Sociales y de la Salud (pp. 193–198). Universidad de Málaga.
Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521–532. https://doi.org/1.1007/BF02293811
Goedert, K., Boston, R., & Barrett, A. (2013). Advancing the science of spatial neglect rehabilitation: An improved statistical approach with
mixed linear modeling. Frontiers in Human Neuroscience, 7, Article 211. https://doi.org/1.3389/fnhum.2013.00211
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576.
https://doi.org/10.1146/annurev.psych.58.110405.085530
Gueorguieva, R., & Krystal, J. (2004). Move over ANOVA: Progress in analyzing repeated-measures data and its reflection in papers
published in the Archives of General Psychiatry. Archives of General Psychiatry, 61(3), 310–317. https://doi.org/10.1001/archpsyc.61.3.310
Gunasekara, F., Richardson, K., Carter, K., & Blakely, T. (2014). Fixed effects analysis of repeated measures data. International Journal of
Epidemiology, 43(1), 264–269. https://doi.org/1.1093/ije/dyt221
Haverkamp, N., & Beauducel, A. (2017). Violation of the sphericity assumption and its effect on Type-I error rates in repeated measures
ANOVA and multi-level linear models (MLM). Frontiers in Psychology, 8, Article 1841. https://doi.org/10.3389/fpsyg.2017.01841
Haverkamp, N., & Beauducel, A. (2019). Differences of Type I error rates for ANOVA and Multilevel-Linear-Models using SAS and SPSS for
repeated measures designs. Meta-Psychology, 3, Article MP.2018.898. https://doi.org/10.15626/MP.2018.898
Islam, M., & Chowdhury, R. (2017). Analysis of repeated measures data. Springer. https://doi.org/1.1007/978-981-10-3794-8
Keselman, H. J., Algina, J., & Kowalchuk, R. (2001). The analysis of repeated measures designs: A review. British Journal of Mathematical
& Statistical Psychology, 54(1), 1–2. https://doi.org/1.1348/000711001159357
Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2002). A comparison of data analysis strategies for testing omnibus effects in higher-order
repeated measures designs. Multivariate Behavioral Research, 37(3), 331–357. https://doi.org/10.1207/S15327906MBR3703_2
Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., Kowalchuk, R. K., Lowman, L. L., Petoskey, M. D., Keselman, J. C., & Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68(3), 350–386. https://doi.org/10.3102/00346543068003350
Keselman, J. C., Lix, L. M., & Keselman, H. J. (1996). The analysis of repeated measurements: A quantitative research synthesis. British
Journal of Mathematical and Statistical Psychology, 49(2), 275–298. https://doi.org/10.1111/j.2044-8317.1996.tb01089.x
Kherad-Pajouh, S., & Renaud, O. (2015). A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs.
Statistical Papers, 56(4), 947–967. https://doi.org/1.1007/s00362-014-0617-3
Kirk, R. E. (2013). Experimental design. Procedures for the behavioral sciences (4th ed.). Sage.
Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). The analysis of repeated measurements with mixed-model adjusted F
tests. Educational and Psychological Measurement, 64(2), 224–242. https://doi.org/10.1177/0013164403260196
Livacic-Rojas, P., Vallejo, G., & Fernández, P. (2010). Analysis of Type I error rates of univariate and multivariate procedures in repeated measures
designs. Communications in Statistics – Simulation and Computation, 39(3), 624–664. https://doi.org/1.1080/03610910903548952
Maurissen, J., & Vidmar, T. (2017). Repeated-measure analyses: Which one? A survey of statistical models and recommendations for
reporting. Neurotoxicology and Teratology, 59, 78–84. https://doi.org/1.1016/j.ntt.2016.1.003
Meltzer, J. A. (2001). The effects on Type I error rate and power of the singlefactor repeated measures ANOVA F-test and selected alternatives
under non-normality and non-uniformity [Doctoral dissertation, The State University of New Jersey]. ProQuest Dissertations Publishing.
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156–166.
https://doi.org/10.1037/0033-2909.105.1.156
Moskowitz, D. S., & Hershberger, S. L. (2013). Modeling intraindividual variability with repeated measures data: Methods and applications.
Taylor & Francis. https://doi.org/1.4324/9781410604477
Raghavarao, D., & Padgett, L. (2014). Repeated measurements and crossover designs. John Wiley & Sons.
Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte Carlo studies of robustness. British Journal of
Mathematical and Statistical Psychology, 45(2), 283–288. https://doi.org/10.1111/j.2044-8317.1992.tb00993.x
SAS Institute Inc. (2013). SAS® 9.4 guide to software Updates. SAS Institute Inc.
Schober, P., & Vetter, T. (2018). Repeated measures designs and analysis of longitudinal data: If at first you do not succeed – try, try again.
Anesthesia and Analgesia, 127(2), 569–575. https://doi.org/1.1213/ANE.0000000000003511
Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC.
Singh, V., Rana, R., & Singhal, R. (2013). Analysis of repeated measurement data in the clinical trials. Journal of Ayurveda and
Integrative Medicine, 4(2), 77–81. https://doi.org/1.4103/0975-9476.113872
Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust? Reinvestigating the robustness of ANOVA against
violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social
Sciences, 6(4), 147–151. https://doi.org/10.1027/1614-2241/a000016
Tabachnick, B. G., & Fidell, L. (2007). Experimental designs using ANOVA. Thomson.
Tamura, R., & Buelke-Sam, J. (1992). The use of repeated measures analyses in developmental toxicology studies. Neurotoxicology and Teratology,
(3), 205–21. https://doi.org/1.1016/0892-0362(92)90018-6
Tippey, K., Ritchey, P., & Ferris, T. (2015). Crossover-repeated measures designs: Clarifying common misconceptions for a valuable human
factors statistical technique. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59(1), 342–346. https://doi.org/10.1177/1541931215591071
Vallejo, G., Fernández, P., & Livacic-Rojas, P. (2010). Pruebas robustas para modelos ANOVA de dos factores con varianzas heterogéneas
[Robust tests for two-way ANOVA models under heteroscedasticity]. Psicológica, 31(1), 129–148.
Vallejo, G., Fernández, M. P., Livacic-Rojas, P. E., & Tuero-Herrero, E. (2011). Comparison of modern methods for analyzing repeated
measures data with missing data. Multivariate Behavioral Research, 46(6), 900–937. https://doi.org/10.1080/00273171.2011.625320
Vallejo, G., & Lozano, L. (2006). Modelos de análisis para diseños multivariados de medidas repetidas [Multivariate repeated measures
designs]. Psicothema, 18(2), 293–299.
Verma, J. P. (2016). Repeated measures design for empirical researchers. Wiley.
Wilcox, R. R. (2022). Introduction to robust estimation and hypothesis testing (5th ed.). Academic Press.
Zhao, J., Wang, C., Totton, S., Cullen, J., & O’Connor, A. (2019). Reporting and analysis of repeated measurements in preclinical
animal experiments. PloS One, 14(8), Article e0220879. https://doi.org/1.1371/journal.pone.022087