Resumen
Antecedentes: La experiencia de problemas psicológicos durante la infancia y la adolescencia es común. Sin embargo, la detección de conductas como síntomas de Psicopatologías que requieren diagnóstico y tratamiento clínico sigue siendo infravalorada. Por ello, para evolucionar en la comprensión de los fenómenos psicológicos considerando sus manifestaciones conductuales particulares, se aplican nuevas perspectivas teóricas y metodológicas como el análisis de redes. Método: En el presente estudio exploramos la dinámica de los síntomas de diferentes problemas internalizados y externalizados y personales-contextuales aplicando el análisis de redes. Se estimaron redes de correlaciones parciales regularizadas que incluye medidas de centralidad estándar e impacto global y estructural de los síntomas de distintos síndromes. Resultados: Los resultados muestran que los síndromes se activan a través de dinámicas de síntomas fuertemente relacionados con los demás y que actúan como intermediarios de potenciales problemas psicopatológicos en niños y adolescentes (por ejemplo, “sentirse triste”, “preocuparse”, “negarse a hablar”, “tener náuseas”, “amenazar a los demás”, “robar fuera”). Las medidas de centralidad y coeficientes de impacto oscilaron entre: fuerza (−2.39, 2.05), intermediación (−1.43, 3.38), cercanía (−2.60, 2.23) e influencia esperada (−2.87, 2.13). Conclusiones: Los resultados obtenidos sugieren la necesidad de explorar la dinámica multiconstructo, así como la comorbilidad sintomática entre ellas.
Citas
Achenbach, T. M. (1991). Manual for Youth Self-Report 1991 YSR profile. University of Vermont.
Achenbach, T. M., Ivanova, M. Y., & Rescorla, L. A. (2017). Empirically based assessment and taxonomy of psychopathology for ages 1½-90+ years: Developmental, multi-informant, and multicultural findings. Comprehensive Psychiatry, 79, 4–18. https://doi.org/10.1016/j.comppsych.2017.03.006
Achenbach, T. M., & Rescorla, L. A. (2001). The manual for the AsEBA schoolage forms & profiles. University of Vermont, Research Center for Children, Youth, and Families.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). American Psychiatric Association. https://search.library.wisc.edu/catalog/9910187853902121
Bekhuis, E., Schoevers, R. A., van Borkulo, C. D., Rosmalen, J. G. M., & Boschloo, L. (2016). The network structure of major depressive disorder, generalized anxiety disorder and somatic symptomatology. Psychological Medicine, 46(14), 2989–2998. https://doi.org/10.1017/S0033291716001550
Bono, C., Ried, L. D., Kimberlin, C., & Vogel, B. (2007). Missing data on the center for epidemiologic studies depression scale: A comparison of 4 imputation techniques. Research in Social and Administrative Pharmacy, 3(1), 1–27. https://doi.org/10.1016/j.sapharm.2006.04.001
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–13. https://doi.org/10.1002/wps.20375
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PLoS One, 6(11), Article e27407. https://doi.org/10.1371/journal.pone.0027407
Borsboom, D., Robinaugh, D. J., The Psychosystems Group, Rhemtulla, M., & Cramer, A. O. J. (2018). Robustness and replicability of psychopathology networks. World Psychiatry, 17(2), 143–144. https://doi.org/10.1002/wps.20515
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS One, 8(4), Article e60188. https://doi.org/10.1371/journal.pone.0060188
Brown, T. A. (2015). Confirmatory factor analysis for applied research. The Guilford Press.
Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100(3), 316–336. https://doi.org/10.1037//0021-843x.100.3.316
Conway, C. C., Forbes, M. K., Forbush, K. T., Fried, E., Hallquist, M. N., Kotov, R., Mullins-Sweatt, S. N., Shackman, A. J., Skodol, A. E., South, S. C., Sunderland, M., Waszczuk, M. A., Zald, D. H., Afzali, M. H., Bornovalova, M. A., Carragher, N., Docherty, A. R., Jonas, K. G., Krueger, R. F., … Eaton, N. R. (2019). A hierarchical taxonomy of psychopathology can transform mental health research. Perspectives on Psychological Science, 14(3), 419–436. https://doi.org/10.1177/1745691618810696
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13–29. https://doi.org/10.1016/j.jrp.2014.07.003
De Bolle, M., De Clercq, B., Decuyper, M., & De Fruyt, F. (2011). Affective determinants of anxiety and depression development in children and adolescents: An individual growth curve analysis. Child Psychiatry & Human Development, 42(6), 694–711. https://doi.org/10.1007/s10578-011-0241-6
de la Barrera, U., Villanueva, L., & Prado-Gascó, V. (2019). Emotional and personality predictors that influence the appearance of somatic complaints
in children and adults. Psicothema, 31(4), 407–413. https://doi.org/10.7334/psicothema2019.69
DeYoung, C. G., Chmielewski, M., Clark, L. A., Condon, D. M., Kotov, R., Krueger, R. F., Lynam, D. R., Markon, K. E., Miller, J. D., Mullins-Sweatt, S. N., Samuel, D. B., Sellbom, M., South, S. C., Thomas, K. M., Watson, D., Watts, A. L., Widiger, T. A., & Wright, A. G. C. (2022). The distinction between symptoms and traits in the hierarchical taxonomy of psychopathology (HiTOP). Journal of Personality, 90(1), 20–33. https://doi.org/10.1111/jopy.12593
Dozois, D. J. A. (2019). Abnormal psychology: Perspectives (6th ed.). Pearson Canada Inc.
Eccles, A. M., Qualter, P., Panayiotou, M., Hurley, R., Boivin, M., & Tremblay, R. E. (2020). Trajectories of early adolescent loneliness: Implications for physical health and sleep. Journal of Child and Family Studies, 29(12), 3398–3407. https://doi.org/10.1007/s10826-020-01804-3
Enders, C. K. (2010). Applied missing data analysis. The Guilford Press. Epskamp, S. (2017). Network psychometrics [Doctoral dissertation, University of Amsterdam]. https://sachaepskamp.com/dissertation/EpskampDissertation.pdf
Epskamp, S., Borsboom, D., & Fried, E. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18. https://doi.org/10.18637/jss.v048.i04
Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M., Riese, H., & Cramer, A. O. J. (2018). Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections. Clinical Psychological Science, 6(3), 416–427. https://doi.org/10.1177/2167702617744325
Ezpeleta, L., de la Osa, N., & Doménech, J. M. (2014). Prevalence of DSM-IV disorders, comorbidity and impairment in 3-year-old Spanish preschoolers.
Social Psychiatry and Psychiatric Epidemiology, 49(1), 145–155. https://doi.org/10.1007/s00127-013-0683-1
Figueras, A. (2006). Evaluación multimétodo y multiinformante de la sintomatología depresiva en niños y adolescentes [Multi-method and multi-informant evaluation of depressive symptomatology in children and adolescents] [Doctoral dissertation, Universitat de Barcelona, UB]. UB repository https://www.tdx.cat/handle/10803/2534
Fonseca-Pedrero, E. (2017). Network analysis: A new way of understanding psychopathology? Revista de Psiquiatría y Salud Mental (English Edition), 10(4), 206–215. https://doi.org/10.1016/j.rpsm.2017.06.004
Fonseca-Pedrero, E. (2018). Análisis de redes en Psicología [Network Analysis in Psychology]. Papeles Del Psicólogo, 39(1), 1–12. https://doi.org/10.23923/pap.psicol2018.2852
Fonseca-Pedrero, E., Pérez-Álvarez, M., Al-Halabí, S., Inchausti, F., López-Navarro, E. R., Muñiz, J., Lucas-Molina, B., Pérez-Albéniz, A., Baños Rivera, R., Cano-Vindel, A., Gimeno-Peón, A., Prado-Abril, J., González-Menéndez, A., Valero, A. V., Priede, A., González-Blanch, C., Ruiz-Rodríguez, P., Moriana, J. A., Gómez, L. E., … Montoya-Castilla, I. (2021). Tratamientos Psicológicos Empíricamente Apoyados Para la Infancia y Adolescencia: Estado de la Cuestión [Empirically Supported Psychological
Treatments for Children and Adolescents: State of the Art]. Psicothema, 33(3), 386–398. https://doi.org/10/gp8pxd
Forbes, M. K., Sunderland, M., Rapee, R. M., Batterham, P. J., Calear, A. L., Carragher, N., Ruggero, C., Zimmerman, M., Baillie, A. J., Lynch, S. J., Mewton, L., Slade, T., & Krueger, R. F. (2021). A detailed hierarchical model of psychopathology: From individual symptoms up to the general factor of psychopathology. Clinical Psychological Science, 9(2), 139–168. https://doi.org/10.1177/2167702620954799
Franco Nerín, N., Pérez Nieto, M., & De Dios Pérez, M.-J. (2014). Relación entre los estilos de crianza parental y el desarrollo de ansiedad y conductas disruptivas en niños de 3 a 6 años [Relationship between parenting styles and the development of anxiety and disruptive behaviors in children aged 3 to 6 years]. Revista de Psicología Clínica con Niños y Adolescentes, 1(2), 149–156. https://www.revistapcna.com/sites/default/files/6-rpcna_vol.2.pdf
Fried, E. (2017). What are psychological constructs? On the nature and statistical modelling of emotions, intelligence, personality traits and mental
disorders. Health Psychology Review, 11(2), 130–134. https://doi.org/10.1080/17437199.2017.1306718
Fried, E., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52, 1–10. https://doi.org/10.1007/s00127-016-1319-z
Funkhouser, C. J., Chacko, A. A., Correa, K. A., Kaiser, A. J. E., & Shankman, S. A. (2021). Unique longitudinal relationships between symptoms of psychopathology in youth: A cross-lagged panel network analysis in the ABCD study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 62(2), 184–194. https://doi.org/10.1111/jcpp.13256
González, R. (2000). Psicopatología del niño y del adolescente [Child and adolescent psychopathology]. Pirámide.
Graham, P., & Reynolds, S. (Eds.). (2013). Cognitive behavior therapy for children and families. Cambridge University Press.
Guyon, H., Falissard, B., & Kop, J. L. (2017). Modeling psychological attributes in psychology—An epistemological discussion: Network analysis vs. Latent variables. Frontiers in Psychology, 8, Article 798. https://doi.org/10.3389/fpsyg.2017.00798
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7a ed.). Pearson.
Hatherill, S. (2007). Child and adolescent therapy: Cognitive behavioral procedures (third edition): Edited by philip C kendall. Journal of Child and Adolescent Mental Health, 19(1), 85–86. https://doi.org/10/b2956v
Howe, E., Bosley, H. G., & Fisher, A. J. (2020). Idiographic network analysis of discrete mood states prior to treatment. Counselling and Psychotherapy Research, 20(3), 470–478. https://doi.org/10.1002/capr.12295
Hukkelberg, S. (2019). The Quintessence of child conduct problems: Identifying central behaviors through network analysis. Journal of Psychopathology and Behavioral Assessment, 41(2), 175–184. https://doi.org/10.1007/s10862-018-9713-3
Jones, P. J. (2017). Impact: A new statistic for network analysis. R Package Vignette. Repository CRAN https://Cran.r-Project.Org/Web/Packages/Networktools/Vignettes/Impact.Pdf.
Jones, P. J. (2020). networktools: Tools for identifying important nodes in networks. Repository CRAN https://CRAN.R-project.org/package=networktools
Jones, P. J., Ma, R., & McNally, R. J. (2021). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research,
(2), 353–367. https://doi.org/10.1080/00273171.2019.1614898
Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J., & Hanhineva, K. (2019). Random forest-based imputation outperforms other methods for imputing
LC-MS metabolomics data: A comparative study. BMC Bioinformatics, 20(1), Article 492. https://doi.org/10.1186/s12859-019-3110-0
Kostelnik, M. J., Phipps, A. W., Soderman, A. K., & Gregory, K. M. (2009). Guiding Children’s Social Development & Learning (6th ed.). Cengage Learning.
Kotov, R., Krueger, R. F., Watson, D., Cicero, D. C., Conway, C. C., DeYoung, C. G., Eaton, N. R., Forbes, M. K., Hallquist, M. N., Latzman, R. D., Mullins-Sweatt, S. N., Ruggero, C. J., Simms, L. J., Waldman, I. D., Waszczuk, M. A., & Wright, A. G. C. (2021). The hierarchical taxonomy of psychopathology (HiTOP): A quantitative nosology based on consensus of evidence. Annual Review of Clinical Psychology, 17(1), 83–108. https://doi.org/10.1146/annurev-clinpsy-081219-093304
Krueger, R. F., Kotov, R., Watson, D., Forbes, M. K., Eaton, N. R., Ruggero, C. J., Simms, L. J., Widiger, T. A., Achenbach, T. M., Bach, B., Bagby, R. M., Bornovalova, M. A., Carpenter, W. T., Chmielewski, M., Cicero, D. C., Clark, L. A., Conway, C., DeClercq, B., DeYoung, C. G., … Zimmermann, J. (2018). Progress in achieving quantitative classification of psychopathology. World Psychiatry, 17(3), 282–293. https://doi.org/10.1002/wps.20566
Lara-Ros, M. R., Rodríguez-Jiménez, T., Martínez-González, A. E., & Piqueras Rodríguez, J. A. (2017). Relación entre el bullying y el estado emocional y social en niños de educación primaria [Relationship between bullying and emotional and social status among primary scholars]. Revista de Psicología Clínica con Niños y Adolescentes, 4(1), 59–64. https://www.redalyc.org/articulo.oa?id=477152555007
Letina, S., Blanken, T. F., Deserno, M. K., & Borsboom, D. (2019). Expanding network analysis tools in psychological networks: Minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity, 2019, Article 9424605. https://doi.org/10.1155/2019/9424605
Maddux, J. E., & Winstead, B. A. (Eds.). (2016). Psychopathology: foundations for a contemporary understanding (4th ed.). Routledge.
Martínez-Hernáez, Á., & Muñoz García, A. (2010a). «Un infinito que no acaba». Modelos explicativos sobre la depresión y el malestar emocional entre los
adolescentes barceloneses (España). Primera parte [“An infinity that does not end.” Explanatory models on depression and emotional distress among
adolescents from Barcelona (Spain). First part]. Salud Mental, 33(2), 145–152.
Martínez-Hernáez, Á., & Muñoz García, A. (2010b). «Un infinito que no acaba». Modelos explicativos sobre la depresión y el malestar emocional entre los adolescentes barceloneses (España). Segunda parte [“An infinity that does not end.” Explanatory models on depression and emotional distress among adolescents from Barcelona (Spain). Second part]. Salud Mental, 33(3), 229–236.
McElroy, E., Fearon, P., Belsky, J., Fonagy, P., & Patalay, P. (2018). Networks of depression and anxiety symptoms across development. Journal of the American Academy of Child and Adolescent Psychiatry, 57(12), 964–973. https://doi.org/10.1016/j.jaac.2018.05.027
McElroy, E., & Patalay, P. (2019). In search of disorders: Internalizing symptom networks in a large clinical sample. Journal of Child Psychology and Psychiatry, 60(8), 897–906. https://doi.org/10.1111/jcpp.13044
Nolen-Hoeksema, S., & Hilt, L. M. (Eds.). (2009). Handbook of depression in adolescents. Taylor & Francis.
Ordóñez, A., Maganto, C., & González, R. (2015). Somatic complaints, emotional awareness and maladjustment in schoolchildren. Anales de Pediatría (English Edition), 82(5), 308–315. https://doi.org/10.1016/j.anpede.2015.04.004
Papalia, D. E., Olds, S. W., & Feldman, R. D. (2007). Human development (10th ed.). McGraw-Hill.
Piqueras, J. A., Mateu-Martínez, O., Cejudo, J., & Pérez-González, J.-C. (2019). Pathways into psychosocial adjustment in children: Modeling the effects of
trait emotional intelligence, social-emotional problems, and gender. Frontiers in Psychology, 10, Article 507. https://doi.org/10.3389/fpsyg.2019.00507
Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of
mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345–365. https://doi.org/10.1111/jcpp.12381
R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401. https://doi.org/10.1177/014662167700100306
Radloff, L. S. (1991). The Use of the center for epidemiologic studies depression scale in adolescents and young adults. Journal of Youth and Adolescence,
(2), 149–166. https://doi.org/10.1007/BF01537606.
Riso, L. P., du Toit, P. L., Stein, D. J., & Young, J. E. (Eds.). (2007). Cognitive schemas and core beliefs in psychological problems: A scientist-practitioner guide. American Psychological Association. https://doi.org/10.1037/11561-000
Ruggero, C. J., Kotov, R., Hopwood, C. J., First, M., Clark, L. A., Skodol, A. E., Mullins-Sweatt, S. N., Patrick, C. J., Bach, B., Cicero, D. C., Docherty, A.,
Simms, L. J., Bagby, R. M., Krueger, R. F., Callahan, J. L., Chmielewski, M., Conway, C. C., De Clercq, B., Dornbach-Bender, A., … Zimmermann, J. (2019). Integrating the hierarchical taxonomy of psychopathology (HiTOP) into clinical practice. Journal of Consulting and Clinical Psychology, 87(12), 1069–1084. https://doi.org/10.1037/ccp0000452
Sánchez-Hernández, M. O., Delgado, B., Carrasco, M. A., & Holgado Tello, F. P. (2018). Facetas de la “Escala de depresión del Centro de Estudios
Epidemiológicos para niños y adolescentes” (CES-DC) en españoles: Validación empírica [Facets of the “Center for Epidemiological Studies Depression Scale for Children and Adolescents” (CES-DC) in Spanish: Empirical validation]. Behavioral Psychology, 26(3), 495–512.
Shah, A., Bartlett, J., Carpenter, J., Nicholas, O., & Hemingway, H. (2014). Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. American Journal of Epidemiology, 179(6), 764–774. https://doi.org/10.1093/aje/kwt312
Solmi, M., Radua, J., Olivola, M., Croce, E., Soardo, L., Salazar de Pablo, G., Il Shin, J., Kirkbride, J. B., Jones, P., Kim, J. H., Kim, J. Y., Carvalho, A. F., Seeman, M. V., Correll, C. U., & Fusar-Poli, P. (2022). Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry, 27(1), 281–295. https://doi.org/10.1038/s41380-021-01161-7
Sukhodolsky, D. G., Kassinove, H., & Gorman, B. S. (2004). Cognitivebehavioral therapy for anger in children and adolescents: A meta-analysis.
Aggression and Violent Behavior, 9(3), 247–269. https://doi.org/10.1016/j.avb.2003.08.005
Tang, F., & Ishwaran, H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10(6), 363–377. https://doi.org/10.1002/sam.11348
Unitat d’Epidemiologia i de Diagnòstic en Psicopatologia del Desenvolupament. (2001). Autoinforme YSR del comportamiento de jóvenes 11-18 años [Youth Self-Report /11-18]. Universitat Autonoma de Barcelona, Departament de Psicologia Clínica i de la Salut. https://www.ued.uab.cat/aseba.html
van Bork, R. (2019). Interpreting psychometric models [Doctoral dissertation, University of Amsterdam]. https://doi.org/10.31237/osf.io/x6a7s
van Borkulo, C. D., van Bork, R., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2022). Comparing network structures on three aspects: A permutation test. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000476
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3),
–67. https://doi.org/10.18637/jss.v045.i03
Weissman, M. M., Orvaschel, H., & Padian, N. (1980). Children´s symptom and social functioning self-report scales: Comparison of mothers´ and children´s reports. The Journal of Nervous and Mental Disease, 168(12), 736–740. https://doi.org/10.1097/00005053-198012000-00005