Caracteres ambientales y espeleotemas de pequeño tamaño en la cavidad de Torca Marino (Parque Nacional de los Picos de Europa, León, España) / Environmental characteristics and small speleothems in the Torca Marino cavity (Picos de Europa National Park, León, Spain).
PDF

Palabras clave

karst
caves
speleothems
thermal regime
Picos de Europa karst
cuevas
espeleotemas
régimen térmico
Picos de Europa karst
grottes
spéléothèmes
régime thermique
Picos de Europa

Cómo citar

González-Gutiérrez, R. B., Santos-González, J., Cruz-De Juán, J., Guerrero-Fernández, J. A., Mendoza, M., Vilariño, M., Estrada, S., Melón-Nava, A., Gómez-Villar, A., & Redondo-Vega, J. M. (2024). Caracteres ambientales y espeleotemas de pequeño tamaño en la cavidad de Torca Marino (Parque Nacional de los Picos de Europa, León, España) / Environmental characteristics and small speleothems in the Torca Marino cavity (Picos de Europa National Park, León, Spain). Ería, 44(1-2 (pre-pub), 5–24. Recuperado a partir de https://reunido.uniovi.es/index.php/RCG/article/view/20474

Resumen

En este artículo se presentan los datos de temperatura y humedad obtenidos entre 2018 y 2020 a diferentes profundidades (entrada, -350 m, -450 m y -680 m) en la cavidad de Torca Marino (Parque Nacional de los Picos de Europa, León) que, con un desnivel de -943 m, es una de las de mayor desarrollo vertical del mundo. Los datos muestran una temperatura interior de 4,6 ºC a -350 m, entre 4,7 y 5,1 ºC a -450 m y de 4,8 ºC a -680 m, con un ambiente siempre saturado y condiciones homotérmicas, aunque con pequeñas fluctuaciones de hasta 0,4 ºC en el sector de la Gran Mulata, con un gradiente de temperatura muy bajo (0,06 ºC cada 100 m) entre las distintas profundidades. Estos valores son muy semejantes a la temperatura media a la cota de entrada a la cueva, estimada en 4,9 ºC. El paso de los espeleólogos también tuvo repercusión en las temperaturas registradas, que ascendieron hasta 0,5 ºC para volver a sus valores normales. El ambiente saturado ha favorecido el desarrollo de espeleotemas, aunque concentrados únicamente en las galerías horizontales, separadas por grandes conductos verticales. Helictitas, frostworks, coralloids, micro-chimeneas de hadas, pisolitas y agregados columnares son los principales espeleotemas de pequeño tamaño localizados en el interior de la cavidad, destacando su notable desarrollo y, sobre todo, su excelente estado de conservación. En el caso de las micro-chimeneas de hadas, no se han encontrado citas previas en el interior de cavidades.

PDF

Citas

Ballesteros, D., Jiménez-Sánchez, M., García-Sansegundo, J. & Giralt, S. (2011). Geological methods applied to speleogenetical research in vertical caves: the example of Torca Teyera shaft (Picos de Europa, northern Spain). Carbonates Evaporites, 26, 29–40. https://doi.org/10.1007/s13146-011-0052-7

Ballesteros, D., Jiménez-Sánchez, M., Domínguez-Cuesta, M. J., García-Sansegundo, J. y Meléndez, M. (2013a). El Global Geosite SK004 Picos de Europa (España). Caracterización de los sistemas kársticos y catálogo de formas para su evaluación como patrimonio geomorfológico. En J. M. Mata-Perelló (Ed.), El patrimonio geológico y minero como motor del desarrollo local (pp. 33–52). XIV Congreso sobre Patrimonio Geológico y Minero. Castrillón (Asturias). Libro de Actas del Congreso. https://www.researchgate.net/publication/282076406_El_Global_Geosite_SK004_Picos_de_Europa_Espana_Caracterizacion_de_los_sistemas_karsticos_y_catalogo_de_formas_para_su_evaluacion_como_Patrimonio_Geomorfologico

Ballesteros, D., Jiménez-Sánchez, M. y García-Sansegundo, J. (2013b). Patrimonio geológico en espacios naturales protegidos: caracterización geomorfológica preliminar de sistemas kársticos profundos en el Parque Nacional de los Picos de Europa (España). Cuadernos del Museo Geominero, 15, 361–370.

Ballesteros, D., Jiménez-Sánchez, M., García-Sansegundo, J. & Borreguero, M. (2014). SpeleoDisc: A 3-D quantitative approach to define the structural control of endokarst. An application to deep cave systems from the Picos de Europa, Spain. Geomorphology, 216, 141–156. https://doi.org/10.1016/j.geomorph.2014.03.039

Ballesteros, D., Malard, A., Jeannin, P. Y., Jiménez-Sánchez, M., García-Sansegundo, J., Meléndez-Asensio, M. & Sendra, G. (2015). KARSYS hydrogeological 3D modeling of alpine karst aquifers developed in geologically complex areas: Picos de Europa National Park (Spain). Environmental Earth Sciences, 74(12), 7699–7714. https://doi.org/10.1007/s12665-015-4712-0

Ballesteros, D., Jiménez-Sánchez, M., García-Sansegundo, J., Giralt, S. y Meléndez-Asensio, M. (2017a). Propuesta de un nuevo modelo espeleogenético para los Picos de Europa (Cordillera Cantábrica, España). Geogaceta, 62, 55–58. https://sge.usal.es/archivos/geogacetas/geo62/geo62_14.pdf

Ballesteros, D., Jiménez-Sánchez, M., Giralt, M., DeFelipe, I. & García-Sansegundo, J. (2017b). Glacial origin for cave rhythmite during MIS 5d-c in a glaciokarst landscape, Picos de Europa (Spain). Geomorphology, 286, 68–77. http://dx.doi.org/10.1016/j.geomorph.2017.03.014

Ballesteros, D., Meléndez-Asensio, M., Garcia-Sansegundo, J. y Jiménez-Sánchez, M. (2017c). Factores geológicos condicionantes del desarrollo y profundidad de las cuevas de los Picos de Europa (Norte de España). Boletín SEDECK, 11, 4–11. https://docs.google.com/document/d/1Sa_UqJUMu__0XzBfwqJ4jhnx_aMxauQfQoR_s3D9vO4/edit?pli=1

Ballesteros, D., Fernández-Martínez, E., Carcavilla, L. & Jiménez-Sánchez, M. (2019). Karst Cave Geoheritage in Protected Areas: Characterisation and Proposals of Management of Deep Caves in the Picos de Europa National Park (Spain). Geoheritage, 11, 1919–1939. https://doi.org/10.1007/s12371-019-00416-8

Cabero Diéguez, V., Martínez de Pisón Stampa, E. y Redondo Vega, J. M. (1988). Picos de Europa (Valdeón y Sajambre). En V. Cabero Diéguez y L. López Trigal (Coords.), La provincia de León y sus comarcas (pp. 201–216) Diario de León. https://dialnet.unirioja.es/servlet/libro?codigo=579984

Calaforra, J. M., Fernández-Cortés, A., Sánchez-Martos, J., Gisbert, J. & Pulido-Bosch, A. (2003). Environmental control for determining human impact and permanent visitor capacity in a potential show cave before tourist use. Environmental Conservation, 30(2), 160–167. https://doi.org/10.1017/S0376892903000146

Castaño de Luis, R., Redondo Vega, J. M., y Fernández Martínez, E. (2010). La cueva de Valdelajo (Sahelices de Sabero, León): una pequeña joya geológica en una comarca minera. En P. Florido e I. Rábano (Eds.), Una visión multidisciplinar del patrimonio geológico y minero, Cuadernos del Museo Geominero, 12, 47–61. https://paleontologia.unileon.es/wp-content/uploads/2010/10/Casta%C3%B1o-et-al.-2009.pdf

Cruz, J. A., Turrero, M. J., Cáceres, J. O., Marín-Roldán, A., Ortega, A. I., Garralón, A., Sánchez, L., Gómez, P., Muñoz-García, M. B., Edwards, R. L. & Martín-Chivelet, J. (2015). Long-term hydrological changes in northern Iberia (4.9–0.9 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain). Environmental Earth Sciences, 74, 7741–7753. https://doi.org/10.1007/s12665-015-4687-x

Davies, W. E. (1960). Meteorological Observations in Martens Cave, West Virginia. Bulletin of the National Speleological Society, 22(1), 92–100. https://caves.org/pub/journal/NSS_Bulletin_volume_22.shtml

Davis, D. G. (2019). Chapter 61. Helictites and related speleothems. In W. B. White, D. C. Culver y T. Pipan (Eds.), Encyclopedia of Caves, 3rd ed. (pp. 514–520). Academic Press. https://doi.org/10.1016/B978-0-12-814124-3.00061-3.

De Waele, J. & Gutiérrez, F. (2022). Karst Hydrogeology, Geomorphology and Caves. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119605379

Domínguez-Villar, D., Carrasco, R. M., Pedraza, J., Fairchild, I. J. y Baker, A. (2010). Efecto en la temperatura de las visitas turísticas en la Cueva del Águila, Ávila. Valoración de la viabilidad de la cueva para el estudio térmico de su dinámica natural. Geogaceta, 49, 43–46. https://sge.usal.es/archivos/geogacetas/geo49/art11.pdf

Domínguez-Villar, D., Fairchild, I. J., Baker, A., Carrasco, R. M. & Pedraza, J. (2013). Reconstruction of cave air temperature based on surface atmosphere temperature and vegetation changes: Implications for speleothem palaeoclimate records. Earth and Planetary Science Letters, 369-370, 155–168. https://doi.org/10.1016/j.epsl.2013.03.017

Dreybrodt, W. (2019). Chapter 116, Speleothem deposition. En W. B. White, D. C. Culver, y T. Pipan (Eds.), Encyclopedia of Caves (pp. 996–1005). 3rd ed. Academic Press. https://doi.org/10.1016/B978-0-12-814124-3.00116-3.

Fairchild, I. J., Frisia, S., Borsato, A. & Tooth, A. (2007). Speleothems. In D. J. Nash y S. J. McLaren (Eds.), Geochemical Sediments and Landscapes (pp. 200–245). Blackwell, Oxford. https://core.ac.uk/download/pdf/19374.pdf

Fernández-Gibert, E., Calaforra, J. M. & Rossi, C. (2000). Speleogenesis in the Picos de Europa Massif, Northern Spain. In A. Klimchouk, D. Ford, A. Palmer & W. Dreybrodt (Eds.), Speleogenesis: Evolution of Karst Aquifers (pp. 352–357). National Speleological Society, Huntsville. https://www.researchgate.net/publication/220044229_Speleogenesis_Evolution_of_Karst_Aquifers

Fernández-Martínez, E., Fuertes Gutiérrez, I., Alonso Herrero, E., Redondo Vega, J. M. Cortizo Álvarez, J., Gómez Villar, A., Santos González, J., Herrero Hernández, A. y González Gutiérrez, R. B. (2010). Lugares de Interés Geológico, León. LIG nº 3, Vega de Liordes, Fundación Patrimonio Natural, Junta de Castilla y León.

Freitas, C. R., Littlbjohn, R. N., Clarkson, T. S. & Kristament, I. S. (1982). Cave climate: Assessment of airflow and ventilation. International Journal of Climatology, 2(4), 383–397. https://doi.org/10.1002/joc.3370020408

Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F. & Selmo, E. M. (2002). Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France): Environment, Fabrics, and Carbonate Geochemistry. Journal of Sedimentary Research, 72(5), 687–699. http://dx.doi.org/10.1306/020702720687

GEM (2017). La Torca Marino (TC-4): a 943 m de profundidad en los Picos de Europa. Boletín SEDECK, 11, 51–57. https://drive.google.com/file/d/1uCW4brbsM-jXwAxbpuGq6e6PtaYsxgWO/view

Gómez Lende, M. y Serrano Cañadas, E. (2012). Elementos del patrimonio geomorfológico subterráneo: las cuevas heladas de Picos de Europa (Cordillera Cantábrica). En A. González Díez (Coord.), Avances de la Geomorfología en España 2010-2012, Actas de la XII Reunión Nacional de Geomorfología (pp. 47–50), Santander. https://info.igme.es/ielig/documentacion/ca/ca046/documentos/d-ca046-03.pdf

Gómez Lende, M. y Serrano Cañadas, E. (2021). Cave mountain permafrost environments in the Picos de Europa and their implications. Cuaternario y Geomorfología, 35(3–4), 55–76. https://doi.org/10.17735/cyg.v35i3-4.89377

Gómez Lende, M., Berenguer, F. & Serrano, E. (2014). Morphology, ice types and thermal regime in a high mountain ice cave. First studies applying terrestrial laser scanner in the Peña Castil ice cave (Picos de Europa, northern Spain). Geografia Fisica e Dinamica Quaternaria, 37(2), 141–150. http://dx.doi.org/10.4461/GFDQ.2014.37.13

Gómez Lende, M., Serrano, E., Jordá Bordehore, L. & Sandoval, S. (2016). The role of GPR techniques in determining ice cave properties: Peña Castil ice cave, Picos de Europa. Earth Surface Processes and Landforms, 41, 2177–2190. https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.3976

González Trueba, J. J. (2007). Geomorfología del Macizo Central del Parque Nacional Picos de Europa. Organismo Autónomo Parques Nacionales, Madrid, 234 pp. https://info.igme.es/ielig/documentacion/ca/ca121/documentos/d-ca121-02.pdf

González-Trueba, J. J. y Serrano Cañadas, E. (2008). La valoración del patrimonio geomorfológico en espacios naturales protegidos. Su aplicación al Parque Nacional de Picos de Europa. Boletín de la Asociación de Geógrafos Españoles, 47, 175–194. https://bage.age-geografia.es/ojs/index.php/bage/article/view/2035

Gruber, P., Szunyogh, G. & Telbisz, T. (2022). The Caves of Aggtelek Karst, Szalonna Karst and Rudabánya Mountains. In M. Veress & S. Leél-Őssy (Eds.), Cave and Karst Systems of Hungary. Cave and Karst Systems of the World (pp. 275–321). Springer, Cham. https://doi.org/10.1007/978-3-030-92960-2_10

Gulden, B. (October 30, 2022). World’s longest caves. Geo2 Committee on Long and Deep Caves, National Speleological Society (NSS). http://www.caverbob.com/wdeep.htm

Hill, C. A. & Forti, P. (1995). The classification of cave minerals and speleothems. International Journal of Speleology, 24(1-4), 77–82. http://dx.doi.org/10.5038/1827-806X.24.1.5

Luetscher, M., Lismonde, B. & Jeannin, P. Y. (2008). Heat exchanges in the heterothermic zone of a karst system: Monlesi cave, Swiss Jura Mountains. Journal of Geophysical Research, 113(2), F02025. https://doi.org/10.1029/2007JF000892

Luetscher, M. & Jeannin, P. Y. (2004). Temperature distribution in karst systems: the role of air and water fluxes. Terra Nova, 16(6), 344–350. https://doi.org/10.1111/j.1365-3121.2004.00572.x

Mammola, S., Piano, E., Cardoso, P., Vernon, Ph., Domínguez-Villar, D., Culver, D. C., Pipan, T. & Isaia, M. (2019). Climate change going deep: The effects of global climatic alterations on cave ecosystems. The Anthropocene Review, 6(1-2), 98–116. https://doi.org/10.1177/2053019619851594

Moore, G. W. (1964). Cave temperature. National Speleological Society News, 22, 57–60.

Moore, G. W. & Nicholas, G. (1964). Out of phase seasonal temperature fluctuations in Cathedral Cave, Kentucky. Geological Society of America Special Paper, 76, 313.

Morris Th. H., Ritter, S. M. & Laycock, D. P. (2012). Geology unfolded. An illustrated guide to the Geology of Utah´s National Parks, Brigham Young University Press (Provo, UT).

Pérez-López, R., Marcos-Nuez, A., Flores, C., Bañón, E., Álvarez, J., Escrivá, B. y Piera, F. (2006). Gradiente geotérmico vertical de grandes simas españolas: CS9-Jou Sin Terre (Cantabria), Cerro del Cuevón (Asturias), Sima de la Cornisa (Castilla y León), Sima GESM (Andalucía) y Sima de Benis (Murcia). Actas EspeleoMeeting Ciudad de Villacarrillo (pp. 21–27). https://www.researchgate.net/publication/306239988_Vertical_geothermic_gradient_for_the_large_cave_systems_in_Spain_CS9-Jou_sin_Terre_Cantabria_Cerro_del_Cuevon_Asturies_Sima_de_la_Cornisa_Castilla_y_Leon_Sima_GESM_Andalusia_and_Sima_de_Benis_Murcia

Robledo Ardila, P. A., Durán Valsero, J. J. y Pardo Iguzquiza, E. (2016). El karst en cifras ¿cuáles son las mayores cavidades del mundo y por qué? Enseñanza de Ciencias de la Tierra, 24(1), 28–34. https://raco.cat/index.php/ECT/article/view/312533

Rossi, C. (2004). Picos de Europa, Spain. In J. Gunn (Ed.), Encyclopedia of Caves and Karst Science (pp. 581–585). New York, Fiz. Dearn. https://doi.org/10.4324/9780203483855

Rowling, J. (2000). Cataloging Helictites and other capillary-controlled speleothems. http://www.speleonics.com.au/jills/pastpapers/helicat/

Ruiz Fernández, J. y Poblete Piedrabuena, M. A. (2012). Las simas del Macizo Occidental de los Picos de Europa: disposición estructural, depósitos asociados y características del drenaje. Investigaciones Geográficas, 57, 205–223. https://doi.org/10.14198/INGEO2012.57.10

Ruiz-Fernández, J., García-Hernández, C. & Gallinar-Cañedo, D. (2022). The glaciers of the Picos de Europa. In M. Oliva, D. Palacios & J. M. Fernández-Fernández (Eds.), Iberia Land of Glaciers (pp. 237–261). Elsevier. https://doi.org/10.1016/B978-0-12-821941-6.00012-8

Sebela, S. & Turk, J. (2013). Natural and anthropogenic influences on the year-round temperature dynamics of air and water in Postojna show cave, Slovenia. Tourism Management, 40(2014), 233–243. http://dx.doi.org/10.1016/j.tourman.2013.06.011

Self, C. A. & Hill, C. A. (2003). How speleothems grow: an introduction to the ontogeny of cave minerals. Journal of Cave and Karst Studies, 65(2), 130–151. https://legacy.caves.org/pub/journal/PDF/V65/v65n2-Self.pdf

Smart, P. L. (1984). The geology, geomorphology and speleogenesis in the eastern massifs, Picos de Europa, Spain. Cave Science, 11, 238–245. https://hinko.org/hinko/Dowloads/BCRA/BCRA%2011-4-1984.pdf

Smart, P. L. (1986). Origin and development of glacio-karst closed depressions in the Picos de Europa, Spain. Zeitschrift für Geomorphologie, 30(4), 423–243. http://doi.org/10.1127/zfg/30/1987/423

Wigley, T. M. L. & Brown, M. C. (1971). Geophysical applications of heat and mass transfer in turbulent pipe flow. Boundary-Layer Meteorology, 1, 300–320. https://doi.org/10.1007/BF02186034

Wigley, T. M. L. & Brown, M. C. (1976). The physics of caves. In T. D. Ford & C. H. D. Cullingford (Eds.), The Science of Speleology (pp. 239–347). London, Academic Press.

Descargas

Los datos de descargas todavía no están disponibles.