Abstract
Teachers, through their activity as mediators between students and mathematical knowledge, are a key element in the achievement of a quality mathematical education. Their actions are conditioned by affective and cognitive factors, that should be considered from the beginning of their training. Thus, this study focuses on the perceived self-efficacy of primary school teachers in initial training from the perspective of the MTSK (Mathematics Teacher’s Specialized Knowledge) model. For this purpose, two self-efficacy scales are validated, one focused on Mathematical Content Knowledge and another focused on Pedagogical Content Knowledge. The methodological procedure to determine the validity and reliability of both scales is reported. Both an adequate adjustment according to the theoretical structure of the MTSK model and a high reliability are observed, so they are considered useful as a starting point for measuring perceived self-efficacy in terms of specialized knowledge for the teaching of mathematics throughout initial training of primary teachers.
References
Alshehri, K., y Youssef, N. (2022). The influence of mathematical knowledge for teaching towards elementary teachers’ mathematical self-efficacy. Eurasia Journal of Mathematics, Science and Technology Education, 18(6). https://doi.org/10.29333/ejmste/12086
Avilés-Canché, K., y Marbán, J. M. (2023). Perfiles de autoeficacia docente y conocimiento especializado para la enseñanza de las matemáticas. Revista electrónica interuniversitaria de formación del profesorado, 26(2), 57-85. https://doi.org/10.6018/reifop.559321
Baka, L. (2017). Norwegian teacher self-efficacy scale psychometric properties of the polish version of the scale. Medycyna Pracy, 68(6), 743-755. https://doi.org/10.13075/mp.5893.00569
Ball, D. L., Thames, M., y Phelps, G. (2008). Content knowledge for teaching: What makes it special. Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215. https://doi.org/10.1037//0033-295x.84.2.191
Brown, T. A., y Moore, M. T. (2012). Confirmatory factor analysis. En R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361-379). The Guilford Press.
Can, B. T., Günhan, B. C., y Erdal, S. Ö. (2012). Using Mathematics in Teaching Science Self-efficacy Scale – UMSSS: A Validity and Reliability Study. Eurasia Journal of Mathematics, Science and Technology Education, 8(4), 269-281. https://doi.org/10.12973/eurasia.2012.845a
Carrillo, J., Climent., N., Flores-Medrano, E., Escudero-Ávila, D., Montes, M. A., Contreras, L. C., Vasco, D., Rojas, N., Flores, P., Aguilar, A., Ribeiro, M., y Muñoz-Catalán. C. (2018). The mathematics teacher's specialized knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981
Cronbach, L. (1951). Coefficient Alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555
Döring, N. (2023). Operationalisierung. En Forschungsmethoden und Evaluation in den Sozial-und Humanwissenschaften. Springer.
Dowling, D. M. (1978). The Development of a mathematics confidence scale and its application in the study of confidence in women college students. The Ohio State University.
Escobar-Pérez, J., y Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en medición, 6(1), 27-36.
Kalkbrenner, M. (2023). Alpha, omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Counseling Outcome Research and Evaluation, 14(1), 77-88. https://doi.org/10.1080/21501378.2021.1940118
Karbasi, S., y Samani, S. (2016). Psychometric properties of teacher self-efficacy scale. Procedia-Social and Behavioral Sciences, 217, 618-621.
Kranzler, J. H., y Pajares, F. (1997). An exploratory factor analysis of the mathematics self-efficacy scale-Revised (MSES-R). Measurement and evaluation in counseling and development, 29(4), 215-228.
López-Aguado, M., y Gutiérrez-Provecho, L. (2019). Cómo realizar e interpretar un análisis factorial exploratorio utilizando SPSS. REIRE Revista d’Innovació i Recerca en Educació, 12(2), 1-14. http://doi.org/10.1344/reire2019.12.227057
Marbán, J. M., Fernández-Gago, J., y García, M. S. (2022). Dominio afectivo para la enseñanza: ¿qué lo hace especial?. En J. Carrillo, M. A. Montes y N. Climent (Eds.), Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, (pp. 193-206). Dykinson.
Mazana, M., Montero, C., y Casmir, R. (2019). Investigating Students’ Attitude towards Learning Mathematics. International Electronic Journal of Mathematics Education, 14(1), 207-231. https://doi.org/10.29333/iejme/3997
McDonald, R. (1999). Test Theory: A Unified Treatment. Psychology Press. https://doi.org/10.4324/9781410601087
Montes, M. A, Climent, N., y Contreras, L. C. (2022). Construyendo conocimiento especializado en geometría: un experimento de enseñanza en formación inicial de maestros. Aula Abierta, 51(1), 27-36. https://doi.org/10.17811/rifie.51.1.2022.27-36
Penfield, R., y Giacobbi, P. (2004). Applying a score confidence interval to Aiken’s item content-relevance index. Measurement in Physical Education and Exercise Science, 8(4), 213-225. http://dx.doi.org/10.1207/s15327841mpee0804_3
Rojas-González, N. (2014). Caracterización del conocimiento especializado del profesor de matemáticas: un estudio de casos [Tesis Doctoral, Universidad de Granada]. Universidad de Granada.
Segarra, J., Bueno, A., Barrazueta, J., y Julia, C. (2021). Estudio de la autoeficacia de las enseñanzas de matemáticas de los estudiantes de cuarto año de la Universidad del Azuay y la Universitat Rovira i Virgili. PNA, 16(1), 78-97. https://doi.org/10.30827/pna.v16i1.18519
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.2307/1175860
Tschannen-Moran, M., y Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. Teaching and teacher education, 17(7), 783-805. https://doi.org/10.1016/S0742-051X(01)00036-1
Verdugo, M., Asún, R., y Martínez, S. (2017). Validación de la escala de creencias de eficacia en la enseñanza de la matemática (ECEEM) y caracterización de las creencias de estudiantes de pedagogía básica. Calidad en la Educación, 47, 145-178. http://dx.doi.org/10.4067/S0718-45652017000200145
Zamora-Araya, J., Cruz, J., y Amador, M. (2020). Autoeficacia y su relación con el rendimiento académico en estudiantes de enseñanza de la matemática. Innovaciones Educativas, 22(32), 137-150. https://doi.org/10.22458/ie.v22i32.28188
Zhang, D., Wang, Q., Stegall, J., Losinki, M., y Katsiyannis, A. (2018). The construction and initial validation of the student teachers’ efficacy scale for teaching students with disabilities. Remedial and Special Education, 39(1), 39-52. https://doi.org/10.1177/0741932516686059
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Aula Abierta