Abstract
An aim of probability teaching to develop students' probabilistic reasoning, which needs adequate knowledge in the teachers in charge of teaching. This paper analyses the common and specialised mathematical knowledge in 66 prospective secondary and high school teachers. The proposed task involved applying their probabilistic literacy and reasoning when interpreting a news report on COVID-19 taken from the media. To assess their common knowledge, five probabilistic and decision-making questions (previously used with high school students) were asked about the article. To analyse their specialised knowledge, participants were asked to identify the mathematical objects required to solve the task. The results indicate good common probabilistic knowledge, with some problems in compound probability. Participants recognised a high number of mathematical concepts in the task with less ability to identify other objects and confusion between various types of objects. It concludes with the need to reinforce the prospective teachers’ probabilistic knowledge.
References
Alonso-Castaño, M., Alonso, P., Mellone, M., y Rodríguez-Muñiz, L. (2021). What mathematical knowledge do prospective teachers reveal when creating and solving a probability problem? Mathematics, 9(24), 3300. https://doi.org/10.3390/math9243300
Alsina, Á., Vásquez Ortiz, C. A., Muñiz-Rodríguez, L., y Rodríguez Muñiz, L. J. (2020). ¿Cómo promover la alfabetización estadística y probabilística en contexto? Estrategias y recursos a partir de la COVID-19 para Educación Primaria. Epsilon, 104, 99-128.
Álvarez-Arroyo, R., Lavela J. F., y Batanero, C. (2022). Razonamiento probabilístico de estudiantes de Bachillerato al interpretar datos de la COVID-19. Journal of Research in Mathematics Education, 11(2), 117-139. https://doi.org/10.17583/redimat.9741
Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., y Spangler, D. (2020). Pre-K-12 Guidelines for assessment and instruction in statistics education (GAISE) report II. American Statistical Association and National Council of Teachers of Mathematics.
Batanero, C., y Álvarez-Arroyo, R. (2024). Teaching and learning of probability. ZDM Mathematics Education, 56, 5-17. https://doi.org/10.1007/s11858-023-01511-5
Batanero, C., Gea, M. M., y Álvarez-Arroyo, R. (2023). La educación del razonamiento probabilístico. Educação Matemática Pesquisa, 25(2), 127-144. http://doi.org/10.23925/1983-3156.2023v25i2p127-144
Batanero, C., y Borovcnik, M. (2016). Statistics and probability in high school. Springer. https://doi.org/10.1007/978-94-6300-624-8
Borovcnik, M. (2016). Probabilistic thinking and probability literacy in the context of risk. Educação Matemática Pesquisa, 18(3), 1491-1516.
Borovcnik M., y Kapadia R. (2018). Reasoning with risk: Teaching probability and risk as twin concepts. En C. Batanero y E. Chernoff E. (Eds.), Teaching and learning stochastics (pp. 3-22). Springer. https://doi.org/10.1007/978-3-319-72871-1_1
Burns, Z., Chiu, A., y Wu, G. (2010). Overweighting of small probabilities. En J. Cochran, L. A. Cox, P. Keskinocak, J. Kharoufeh y J. C. SmithWiley (Eds.), Encyclopedia of operations research and management science. Jonh Wiley. https://doi.org/10.1002/9780470400531.eorms0634
Burgos, M., López-Martín, M. del M., Aguayo-Arriagada, C. G., y Albanese, V. (2022). Análisis cognitivo de tareas de comparación de probabilidades por futuro profesorado de Educación Primaria. Uniciencia, 36(1),1-24. http://dx.doi.org/10.15359/ru.36-1.38
Díaz, C., y de La Fuente, I. (2007). Assessing students’ difficulties with conditional probability and Bayesian reasoning. International Electronic Journal of Mathematics Education, 2(3), 128-148. https://doi.org/10.29333/iejme/180
Gal, I. (2005). Towards "probability literacy" for all citizens: Building blocks and instructional dilemmas. En G. A. Jones (Ed.), Exploring probability in school (pp. 39-63). Springer.
Gal, I., y Geiger, V. (2022). Welcome to the era of vague news: a study of the demands of statistical and mathematical products in the COVID-19 pandemic media. Educational Studies in Mathematics, 111(1), 5-28. https://doi.org/10.1007/s10649-022-10151-7
Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas. UNIÓN, 20, 13-31.
Godino, J., Batanero, C., y Font, V. (2007). The ontosemiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Batanero, C., y Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 38-43.
Gómez, E., Batanero, C., y Contreras, J. M. (2014). Conocimiento matemático de futuros profesores para la enseñanza de la probabilidad desde el enfoque frecuencial. Bolema, 28, 209-229. https://doi.org/10.1590/1980-4415v28n48a11
Godino, J. D., Giacomone, B., Batanero, C., y Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90-113. https://doi.org/10.1590/1980-4415v31n57a05
Johannssen, A., Chukhrova, N., Schmal, F., y Stabenow, K. (2021). Statistical literacy. Misuse of statistics and its consequences. Journal of Statistics and Data Science Education, 29(1), 54-62. https://doi.org/10.1080/10691898.2020.1860727
Hill, H. C., Ball, D. L., y Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372-400.
Huerta, M. P., y Bresó, J. A. (2017). La probabilidad condicional y la probabilidad conjunta en la resolución de problemas de probabilidad. Avances de Investigación en Educación Matemática, 11, 87-106. https://doi.org/10.35763/aiem.v1i11.188
Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage.
Ministerio de Educación y Formación Profesional [MEFP] (2022a). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. Boletín Oficial del Estado, 76, de 30 de marzo de 2022. https://www.boe.es/eli/es/rd/2022/03/29/217/con
Ministerio de Educación y Formación Profesional [MEFP] (2022b). Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato. Boletín Oficial del Estado, 82, de 6 de abril de 2022. https://www.boe.es/eli/es/rd/2022/04/05/243/con
Muñiz-Rodríguez, L., y Rodríguez-Muñiz, L. J. (2021). Análisis de la práctica docente en el ámbito de la educación estadística en educación secundaria. Paradigma, 42(e1), 191-220. https://doi.org/10.37618/PARADIGMA.1011-2251.2021.p191-220.id1023
Muñiz-Rodríguez, L., Rodríguez-Muñiz, L. J., y Alsina, Á. (2020). Deficits in the statistical and probabilistic literacy of citizens: Effects in a world in crisis. Mathematics, 8(11), 1872.
Pino-Fan, L. R., Assis, A., y Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. EURASIA Journal of Mathematics, Science and Technology Education, 11(6), 1429-1456. https://doi.org/10.12973/eurasia.2015.1403a
Reb, J., Luan, S., y Gigerenzer, G. (2024). Smart Management: How Simple Heuristics Help Leaders Make Good Decisions in an Uncertain World. The MIT Press.
Sanabria, G., y Núñez, F. (2017). La probabilidad como elemento orientador de la toma de decisiones. Revista digital Matemática, Educación e Internet, 17(2), 1-13. https://doi.org/10.18845/rdmei.v17i2.3079
Sánchez, E., y Valdez, J. C. (2017). Las ideas fundamentales de probabilidad en el razonamiento de estudiantes de Bachillerato. Avances de Investigación en Educación Matemática, 11, 127-143. https://doi.org/10.35763/aiem.v1i11.180
Santos, C., y Dias, C. (2015). A probabilistic approach to coincidences: the birthday paradox. Pensamiento Matemático, 5(2), 55-60.
Schum, D. A. (2001). The evidential foundations of probabilistic reasoning. Northwestern University Press.
Valenzuela-Ruiz, S. M., Batanero, C., Begué, N., y Garzón-Guerrero, J. A. (2023). Conocimiento didáctico-matemático sobre la distribución de la media muestral de profesorado de Bachillerato en formación. Uniciencia, 37(1), 44-64. http://dx.doi.org/10.15359/ru.37-1.3
Vásquez, C., y Alsina, Á. (2015). El conocimiento del profesorado para enseñar probabilidad: Un análisis global desde el modelo del conocimiento didáctico-matemático. Avances de Investigación en Educación Matemática, 7, 27-48. https://doi.org/10.35763/aiem.v1i7.104
Yoe, C. (2019). Principles of risk analysis: decision making under uncertainty. CRC press.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Aula Abierta