La relación entre la confianza tecnológica y el pensamiento creativo matemático en la educación primaria: El papel mediador de la autopercepción de las matemáticas
PDF (English)

Palabras clave

mathematical creative thinking
primary students’
self-perception of mathematics
structural equation modelling
technological self-confidence pensamiento creativo matemático
estudiantes de educación primaria
autopercepción en matemáticas
modelado de ecuaciones estructurales
auto-confianza tecnológica

Cómo citar

Meriyati, M., Suherman, S., Kristanto, V. H., Hidayatulloh, H., Mardiyana, M., Untari, E., Lakatos, K., & Mujib, M. (2025). La relación entre la confianza tecnológica y el pensamiento creativo matemático en la educación primaria: El papel mediador de la autopercepción de las matemáticas. Aula Abierta, 54(4), 399–411. https://doi.org/10.17811/rifie.21914

Resumen

En la era digital, el pensamiento creativo matemático, la confianza tecnológica y la autopercepción de las matemáticas fueron habilidades esenciales para el éxito en un mundo impulsado por la innovación y la resolución de problemas. Sin embargo, estas variables no habían sido investigadas a fondo. Este estudio investigó cómo la autopercepción de las matemáticas actuaba como mediador entre la confianza tecnológica y el pensamiento creativo matemático. Los datos fueron recogidos de 502 estudiantes de primaria (56,6% mujeres), con una edad promedio de 10,86 ± 0,77 años, utilizando cuestionarios y pruebas en línea. Se utilizó el modelado de ecuaciones estructurales para validar los constructos y las herramientas de medición. Los resultados revelaron que la confianza tecnológica tenía un impacto positivo en el pensamiento creativo matemático, mientras que la autopercepción de las matemáticas también influía positivamente en el pensamiento creativo matemático. Además, la autopercepción de las matemáticas desempeñó un papel mediador significativo en la relación entre la confianza tecnológica y el pensamiento creativo matemático. El estudio destaca la importancia de incorporar la tecnología y estrategias de auto-confianza en los planes de estudio de matemáticas, para preparar mejor a los estudiantes para la resolución de problemas del mundo real en una sociedad digital.

https://doi.org/10.17811/rifie.21914
PDF (English)

Citas

Ajisebutu, A. E., Adetayo, A., Okediji, O. G., & Enamudu, A. I. (2024). Information Technology Self-Efficacy and Library Portal Use in Nigerian Universities. Journal of Digital Learning and Education, 4(3), 223–236. https://doi.org/10.52562/jdle.v4i3.1273

Alieto, E., Abequibel-Encarnacion, B., Estigoy, E., Balasa, K., Eijansantos, A., & Torres-Toukoumidis, A. (2024). Teaching inside a digital classroom: A quantitative analysis of attitude, technological competence and access among teachers across subject disciplines. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24282

An, F., Xi, L., Yu, J., & Zhang, M. (2022). Relationship between technology acceptance and self-directed learning: Mediation role of positive emotions and technological self-efficacy. Sustainability, 14(16), 10390. https://doi.org/10.3390/su141610390

Areepattamannil, S., & Kaur, B. (2012). Influences of Self-Perceived Competence in Mathematics and Positive Affect toward Mathematics on Mathematics Achievement of Adolescents in Singapore. Mathematics Education Research Group of Australasia.

Attard, C., Mountain, G., & Romano, D. M. (2016). Problem solving, confidence and frustration when carrying out familiar tasks on non-familiar mobile devices. Computers in Human Behavior, 61, 300–312. https://doi.org/10.1016/j.chb.2016.03.001

Ayuso, N., Fillola, E., Masiá, B., Murillo, A. C., Trillo-Lado, R., Baldassarri, S., Cerezo, E., Ruberte, L., Mariscal, M. D., & Villarroya-Gaudó, M. (2020). Gender gap in STEM: A cross-sectional study of primary school students’ self-perception and test anxiety in mathematics. IEEE Transactions on Education, 64(1), 40–49. https://doi.org/10.1109/TE.2020.3004075

Bandura, A. (1997). Self-efficacy: The exercise of control (Vol. 604). Freeman.

Barkatsas, A. T., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52(3), 562–570. https://doi.org/10.1016/j.compedu.2008.11.001

Bolaños, F., Salinas, Á., & Pilerot, O. (2023). Instructional techniques and tools reported as being used by teachers within empirical research focusing on in-class digital ability development: A literature review. Journal of Computers in Education, 10(1), 57–81. https://doi.org/10.1007/s40692-022-00222-2

Byungura, J. C., Hansson, H., Muparasi, M., & Ruhinda, B. (2018). Familiarity with Technology among First‑Year Students in Rwandan Tertiary Education. Electronic Journal of E-Learning, 16(1), pp30‑45-pp30‑45.

Cai, M., Luo, H., Meng, X., & Liu, J. (2024). Exploring the multidimensional impact of ICT on academic achievement and mental health: Evidence from a large‐scale survey of higher vocational students in China. Journal of Computer Assisted Learning, jcal.12995. https://doi.org/10.1111/jcal.12995

Chen, M.-J., Lee, C.-Y., & Hsu, W.-C. (2015). Influence of mathematical representation and mathematics self-efficacy on the learning effectiveness of fifth graders in pattern reasoning. International Journal of Learning, Teaching and Educational Research, 13(1).

Cobo, C. (2013). Skills for innovation: Envisioning an education that prepares for the changing world. The Curriculum Journal, 24(1), 67–85. https://doi.org/10.1080/09585176.2012.744330

Cretchley, P. (2007). Does computer confidence relate to levels of achievement in ICT-enriched learning models? Education and Information Technologies, 12, 29–39. https://doi.org/10.1007/s10639-006-9004-6

Ding, Y., Klapp, A., & Yang Hansen, K. (2024). The importance of mathematics self-concept and self-efficacy for mathematics achievement: A comparison between public and independent schools in Sweden. Educational Psychology, 44(8), 872–892. https://doi.org/10.1080/01443410.2024.2410217

Dupeyrat, C., Escribe, C., Huet, N., & Régner, I. (2011). Positive biases in self-assessment of mathematics competence, achievement goals, and mathematics performance. International Journal of Educational Research, 50(4), 241–250. https://doi.org/10.1016/j.ijer.2011.08.005

Farida, F., Supriadi, N., Andriani, S., Pratiwi, D. D., Suherman, S., & Muhammad, R. R. (2022). STEM approach and computer science impact the metaphorical thinking of Indonesian students’. Revista de Educación a Distancia (RED), 22(69). https://doi.org/10.6018/red.493721

Fernández-Andújar, M., Alonso, M. O., Sorribes, E., Villalba, V., & Calderon, C. (2022). Internet addiction, phubbing, psychological variables and self-perception of mathematical competence in college students. Mathematics, 10(15), 2631. https://doi.org/10.3390/math10152631

Foster, C. (2016). Confidence and competence with mathematical procedures. Educational Studies in Mathematics, 91, 271–288. https://doi.org/10.1007/s10649-015-9660-9

Francis, L. J., Katz, Y. J., & Jones, S. H. (2000). The reliability and validity of the Hebrew version of the Computer Attitude Scale. Computers & Education, 35(2), 149–159. https://doi.org/10.1016/S0360-1315(00)00022-1

Görgün, S., & Tican, C. (2020). Investigation of Middle School Students’ Math Self-Efficacy Perceptions and Math Problem Posing Attitudes. International Education Studies, 13(11), 86–98. https://doi.org/10.5539/ies.v13n11p86

Guaman-Quintanilla, S., Chiluiza, K., Bravo Matamoros, A., Everaert, P., & Valcke, M. (2022). What is the state of the art regarding the application of Design Thinking in Higher Education? A scoping review. Aula Abierta, 51(4), 319–328. https://doi.org/10.17811/rifie.51.4.2022.319-328

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

Herman, J., & Kerby-Helm, A. (2022). Question of the Week: Can a Low-Stakes Assignment Improve Students’ Attitudes? Journal of Statistics and Data Science Education, 30(1), 39–44. https://doi.org/10.1080/26939169.2021.2020697

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Huang, P. M., & Brainard, S. G. (2001). Identifying determinants of academic selfconfidence among science, math, engineering, and technology students. Journal of Women and Minorities in Science and Engineering, 7(4).

Huang, Y., & Gursoy, D. (2024). How does AI technology integration affect employees’ proactive service behaviors? A transactional theory of stress perspective. Journal of Retailing and Consumer Services, 77, 103700.

Karatas, H., Bademcioglu, M., & Celik, S. (2017). A study on the relationship between problem solving skills and multiple intelligences of high school students. International Journal of Education and Practice, 5(10), 171–181. https://doi.org/10.18488/journal.61.2017.510.171.181

Karwowski, M. (2016). The dynamics of creative self-concept: Changes and reciprocal relations between creative self-efficacy and creative personal identity. Creativity Research Journal, 28(1), 99–104. https://doi.org/10.1080/10400419.2016.1125254

Kaur, T., & Prendergast, M. (2022). Students’ perceptions of mathematics writing and its impact on their enjoyment and self-confidence. Teaching Mathematics and Its Applications: An International Journal of the IMA, 41(1), 1–21. https://doi.org/10.1093/teamat/hrab008

Khalil, I. A., & Prahmana, R. C. I. (2024). Mathematics Learning Orientation: Mathematical Creative Thinking Ability or Creative Disposition?. Journal on Mathematics Education, 15(1), 253–276. https://doi.org/10.22342/jme.v15i1.pp253-276

Kharisudin, I. (2022). Analysis of Mathematical Creative Thinking Skill: In Terms of Self Confidence. International Journal of Instruction, 15(4). https://doi.org/10.29333/iji.2022.15454a

Kim, D. J. (2008). Self-Perception-Based Versus Transference-Based Trust Determinants in Computer-Mediated Transactions: A Cross-Cultural Comparison Study. Journal of Management Information Systems, 24(4), 13–45. https://doi.org/10.2753/MIS0742-1222240401

Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What is ‘enhanced’ and how do we know? A critical literature review. Learning, Media and Technology, 39(1), 6–36. https://doi.org/10.1080/17439884.2013.770404

Krummheuer, G., Leuzinger-Bohleber, M., Müller-Kirchof, M., Münz, M., & Vogel, R. (2013). Explaining the mathematical creativity of a young boy: An interdisciplinary venture between mathematics education and psychoanalysis. Educational Studies in Mathematics, 84(2), 183–199. https://doi.org/10.1007/s10649-013-9505-3

Kunhertanti, K., & Santosa, R. H. (2018). The influence of students’ self confidence on mathematics learning achievement. Journal of Physics: Conference Series, 1097(1), 012126. https://doi.org/10.1088/1742-6596/1097/1/012126

Liu, Y.-L. E., Lee, T.-P., & Huang, Y.-M. (2023). Enhancing university students’ creative confidence, learning motivation, and team creative performance in design thinking using a digital visual collaborative environment. Thinking Skills and Creativity, 50, 101388. https://doi.org/10.1016/j.tsc.2023.101388

Lucas, W. A., Cooper, S. Y., Ward, T., & Cave, F. (2009). Industry placement, authentic experience and the development of venturing and technology self-efficacy. Technovation, 29(11), 738–752. https://doi.org/10.1016/j.technovation.2009.06.002

Makri-Botsari, E., & Psycharis, S. (2008). Enhancing Motivation, School Competence and Self-perception of Physics in the Environment of the Cognitive Tutor CTAT during Physics Instruction. In M. D. Lytras, J. M. Carroll, E. Damiani, R. D. Tennyson, D. Avison, G. Vossen, & P. Ordonez De Pablos (Eds.), The Open Knowlege Society. A Computer Science and Information Systems Manifesto (Vol. 19, pp. 342–353). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-87783-7_44

Malureanu, A., Panisoara, G., & Lazar, I. (2021). The relationship between self-confidence, self-efficacy, grit, usefulness, and ease of use of elearning platforms in corporate training during the COVID-19 pandemic. Sustainability, 13(12), 6633. https://doi.org/10.3390/su13126633

Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338–348. https://doi.org/10.1080/10400410903297402

Marsh, H. W., Walker, R., & Debus, R. (1991). Subject-specific components of academic self-concept and self-efficacy. Contemporary Educational Psychology, 16(4), 331–345. https://doi.org/10.1016/0361-476X(91)90013-B

Montague, M., & Van Garderen, D. (2003). A Cross-Sectional Study of Mathematics Achievement, Estimation Skills, and Academic Self-Perception in Students of Varying Ability. Journal of Learning Disabilities, 36(5), 437–448. https://doi.org/10.1177/00222194030360050501

Mullins, D., Rummel, N., & Spada, H. (2011). Are two heads always better than one? Differential effects of collaboration on students’ computer-supported learning in mathematics. International Journal of Computer-Supported Collaborative Learning, 6, 421–443. https://doi.org/10.1007/s11412-011-9122-z

Nufus, H., Muhandaz, R., Nurdin, E., Ariawan, R., Fineldi, R. J., Hayati, I. R., & Situmorang, D. D. B. (2024). Analyzing the students’ mathematical creative thinking ability in terms of self-regulated learning: How do we find what we are looking for? Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e24871

Owsley, C. S., & Greenwood, K. (2024). Awareness and perception of artificial intelligence operationalized integration in news media industry and society. AI & SOCIETY, 39(1), 417–431. https://doi.org/10.1007/s00146-022-01386-2

Ozuorcun, N. C., & Tabak, F. (2012). Is m-learning versus e-learning or are they supporting each other? Procedia-Social and Behavioral Sciences, 46, 299–305. https://doi.org/10.1016/j.sbspro.2012.05.110

Park, H., Lawson, D., & Williams, H. E. (2012). Relations between Technology, Parent Education, Self-Confidence, and Academic Aspiration of Hispanic Immigrant Students. Journal of Educational Computing Research, 46(3), 255–265. https://doi.org/10.2190/EC.46.3.c

Passiatore, Y., Costa, S., Grossi, G., Carrus, G., & Pirchio, S. (2024). Mathematics self-concept moderates the relation between cognitive functions and mathematical skills in primary school children. Social Psychology of Education, 27(3), 1143–1159. https://doi.org/10.1007/s11218-023-09854-3

Poon, J. C., Au, A. C., Tong, T. M., & Lau, S. (2014). The feasibility of enhancement of knowledge and self-confidence in creativity: A pilot study of a three-hour SCAMPER workshop on secondary students. Thinking Skills and Creativity, 14, 32–40. https://doi.org/10.1016/j.tsc.2014.06.006

Psycharis, S., & Kotzampasaki, E. (2019). The impact of a STEM inquiry game learning scenario on computational thinking and computer self-confidence. Eurasia Journal of Mathematics, Science and Technology Education, 15(4), em1689. https://doi.org/10.29333/ejmste/103071

Ragnarsdottir, G. B., Petursdottir, A.-L., Sigurdardottir, Z. G., Stefansson, K. K., & Oskarsdottir, H. (2024). The development of self-perception of ability in Icelandic children with and without specific learning difficulties. European Journal of Psychology of Education, 39(1), 55–76. https://doi.org/10.1007/s10212-023-00688-3

Rahayuningsih, S., Sirajuddin, S., & Ikram, M. (2021). Using Open-ended Problem-solving Tests to Identify Students’ Mathematical Creative Thinking Ability. Participatory Educational Research, 8(3), 285–299. https://doi.org/10.17275/per.21.66.8.3

Reich, D. A., & Arkin, R. M. (2006). Self-doubt, attributions, and the perceived implicit theories of others. Self and Identity, 5(02), 89–109. https://doi.org/10.1080/15298860500441965

Rosales-Márquez, C., Carbonell-García, C. E., Miranda-Vargas, V., Diaz-Zavala, R., & Laura-De La Cruz, K. M. (2025). Self-confidence as a predictor of digital skills: A fundamental pillar for the digitalization of higher education. Frontiers in Education, 9, 1515033. https://doi.org/10.3389/feduc.2024.1515033

Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & Means, B. M. (2000). Changing how and what children learn in school with computer-based technologies. The Future of Children, 76–101. https://doi.org/10.2307/1602690

Sakellariou, C. (2022). The reciprocal relationship between mathematics self-efficacy and mathematics performance in US high school students: Instrumental variables estimates and gender differences. Frontiers in Psychology, 13, 941253. https://doi.org/10.3389/fpsyg.2022.941253

Schoevers, E. M., Leseman, P. P., Slot, E. M., Bakker, A., Keijzer, R., & Kroesbergen, E. H. (2019). Promoting pupils’ creative thinking in primary school mathematics: A case study. Thinking Skills and Creativity, 31, 323–334. https://doi.org/10.1016/j.tsc.2019.02.003

Shen, C., & Pedulla, J. J. (2000). The relationship between students’ achievement and their self-perception of competence and rigour of mathematics and science: A cross-national analysis. Assessment in Education: Principles, Policy & Practice, 7(2), 237–253. https://doi.org/10.1080/713613335

Shih, J., Ing, M., Phelan, J., Brown, R., & Maiorca, C. (2019). The Influence of Students’ Self-Perceptions and Mathematics Experiences on Learning More Mathematics in the Future. Investigations in Mathematics Learning, 11(3), 220–229. https://doi.org/10.1080/19477503.2019.1582960

Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM, 41(1–2), 13–27. https://doi.org/10.1007/s11858-008-0114-z

Suherman, S., & Vidákovich, T. (2022a). Adaptation and Validation of Students’ Attitudes Toward Mathematics to Indonesia. Pedagogika, 147(3), 227–252. https://doi.org/10.15823/p.2022.147.11

Suherman, S., & Vidákovich, T. (2022b). Assessment of mathematical creative thinking: A systematic review. Thinking Skills and Creativity, 44, 101019. https://doi.org/10.1016/j.tsc.2022.101019

Suherman, S., & Vidakovich, T. (2022). Tapis Patterns in the Context of Ethnomathematics to Assess Students’ Creative Thinking in Mathematics: A Rasch Measurement. Mathematics Teaching Research Journal, 14(4), 56–72.

Suherman, S., & Vidákovich, T. (2024a). Relationship between ethnic identity, attitude, and mathematical creative thinking among secondary school students. Thinking Skills and Creativity, 51, 101448. https://doi.org/10.1016/j.tsc.2023.101448

Suherman, S., & Vidákovich, T. (2024b). Role of creative self-efficacy and perceived creativity as predictors of mathematical creative thinking: Mediating role of computational thinking. Thinking Skills and Creativity, 53, 101591. https://doi.org/10.1016/j.tsc.2024.101591

Supriadi, N., Jamaluddin Z, W., & Suherman, S. (2024). The role of learning anxiety and mathematical reasoning as predictor of promoting learning motivation: The mediating role of mathematical problem solving. Thinking Skills and Creativity, 52, 101497. https://doi.org/10.1016/j.tsc.2024.101497

Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565

Tang, C., Mao, S., Naumann, S. E., & Xing, Z. (2022). Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity, 44, 101032. https://doi.org/10.1016/j.tsc.2022.101032

Tully, D., & Jacobs, B. (2010). Effects of single-gender mathematics classrooms on self-perception of mathematical ability and post secondary engineering paths: An Australian case study. European Journal of Engineering Education, 35(4), 455–467. https://doi.org/10.1080/03043797.2010.489940

Ventrella, F. M., & Cotnam-Kappel, M. (2024). Examining digital capital and digital inequalities in Canadian elementary schools: Insights from teachers. Telematics and Informatics, 86, 102070. https://doi.org/10.1016/j.tele.2023.102070

Vieites, T., Iglesias, A., Freire, F. M. D., Pita, L. D., & Llorente, C. R. (2024). Motivación, enfoques de trabajo en los deberes escolares y rendimiento académico en estudiantes de Educación Secundaria Obligatoria. Aula Abierta, 53(3), 229–237. https://doi.org/10.17811/rifie.20555

Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing? Educational Studies in Mathematics, 105(3), 487–517. https://doi.org/10.1007/s10649-020-10005-0

Wei, Z. (2023). Navigating Digital Learning Landscapes: Unveiling the Interplay Between Learning Behaviors, Digital Literacy, and Educational Outcomes. Journal of the Knowledge Economy, 15(3), 10516–10546. https://doi.org/10.1007/s13132-023-01522-3

Whalen, K. A., Renkl, A., Eitel, A., & Glogger‐Frey, I. (2024). Digital re‐attributional feedback in high school mathematics education and its effect on motivation and achievement. Journal of Computer Assisted Learning, 40(2), 478–493. https://doi.org/10.1111/jcal.12889

Yanuarto, W. N., Maat, S. M., Setyanigsih, E., Isnawan, M. G., & Zakaria, M. I. (2023). The Moderating Model of Teaching Anxiety on Teaching Beliefs and TPACK Effect to ICT Literacy among Pre-Service Mathematics Teachers. Mathematics Teaching Research Journal, 15(3), 50–72.

Zander, L., Höhne, E., Harms, S., Pfost, M., & Hornsey, M. J. (2020). When grades are high but self-efficacy is low: Unpacking the confidence gap between girls and boys in mathematics. Frontiers in Psychology, 11, 552355. https://doi.org/10.3389/fpsyg.2020.552355

Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self‐efficacy beliefs of successful men and women in mathematics, science, and technology careers. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(9), 1036–1058. https://doi.org/10.1002/tea.20195

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2025 Aula Abierta

Descargas

Los datos de descargas todavía no están disponibles.