Abstract
Various studies point out the deficiencies in the probabilistic reasoning of prospective teachers and their connection to poor proportional reasoning. These limitations may also be related to the algebraization degree of the mathematical activity involved. To shed some light on this matter, in this study, the responses of a group of pre-service teachers to a task that requires determining the composition of an urn, with the same probability of success as another urn in which the ratio between favourable and unfavourable cases is known, are analyzed. The strategies and errors they present are examined, focusing on the levels of algebraic reasoning in their mathematical practices. The results show that future teachers successfully determined the composition of the urn using predominantly arithmetic strategies and encountered difficulties in justifying their solutions. These difficulties decreased as the solutions exhibited characteristics of proto-algebraic reasoning.
References
Australian Curriculum, Assessment and Reporting Authority (ACARA) (2014). Foundation to year 10 curriculum: Statistics and Probability (ACMSPO24).
Batanero, C., Arteaga, P., Serrano, L., y Ruiz, B. (2014). Prospective primary school teachers’ perception of randomness. En E. Chernoff y B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 345–366). Springer. https://doi.org/10.1007/978-94-007-7155-0_19
Batanero, C., Gómez, E., Contreras, J. M., y Díaz, C. (2015). Conocimiento matemático de profesores de primaria en formación para la enseñanza de la probabilidad: Un estudio exploratorio. Práxis Educativa, 10(1), 11-34. https://doi.org/10.5212/PraxEduc.v.10i1.0001
Begolli, K. N., Dai, T., McGinn, K. M., y Booth, J. L. (2021). Could probability be out of proportion? Self-explanation and example-based practice help students with lower proportional reasoning skills learn probability. Instructional Science 49, 441–473. https://doi.org/10.1007/s11251-021-09550-9
Ben-Chaim, D., Keret, Y., y Ilany, B. S. (2012). Ratio and proportion: research and teaching in mathematics teachers' education (Pre- and In-Service Mathematics Teachers of Elementary and Middle School Classes). Sense Publisher. https://doi.org/10.1007/978-94-6091-784-4
Borovnick, M., y Kapadia, R. (2014). A Historical and Philosophical Perspective on Probability. En E. Chernoff y B. Sriraman (Eds.), Probabilistic Thinking. Advances in Mathematics Education (pp. 7–34). Springer. https://doi.org/10.1007/978-94-007-7155-0_2
Bryant, P., y Nunes, T. (2012). Children’s understanding of probability: A literature review (full report). The Nuffield Foundation.
Buforn, A., Llinares, S., y Fernández, C. (2018). Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. Revista Mexicana de Investigación Educativa, 23, 229-251.
Burgos, M., Batanero, C., y Godino, J. D. (2022). Algebraization Levels in the Study of Probability. Mathematics, 10(1), 91. https://doi.org/10.3390/math10010091
Burgos, M., Beltrán-Pellicer, P., Giacomone, B., y Godino, J. D. (2018). Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesquisa, 44, 1-22.
Burgos, M., y Godino J. D. (2020). Modelo ontosemiótico de referencia de la proporcionalidad. Implicaciones para la planificación curricular en primaria y secundaria, AIEM, 18, 1-20.
Burgos, M., y Godino J. D. (2022). Assessing the epistemic analysis competence of prospective primary school teachers on proportionality tasks. International Journal of Science and Mathematics Education, 20, 367-389.
Common Core State Standards Initiative (CCSSI) (2015). Common Core State Standards for Mathematics. http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
Franco, J., y Alsina, Á. (2022a). El conocimiento del profesorado de Educación Primaria para enseñar estadística y probabilidad: una revisión sistemática. Aula Abierta, 51(1), 7-16. https://doi.org/10.17811/rifie.51
Franco, J., y Alsina, Á. (2022b). Conocimiento especializado del profesorado de Educación Primaria para enseñar estadística y probabilidad. Educación Matemática, 34(3), 65-96.
Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactiques des Mathematiques, 22(2), 237-284.
Godino, J. D., Aké, L., Gonzato, M., y Wilhelmi, M. R. (2014). Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros. Enseñanza de las Ciencias, 32(1), 199-219. https://doi.org/10.5565/rev/ensciencias.965
Godino, J. D., Batanero, C., y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Burgos, M. y Gea, M. (2022). Analysing theories of meaning in mathematics education from the onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53, 2609-2636. https://doi.org/10.1080/0020739x.2021.1896042
Gómez, E., Batanero, C., y Contreras, C. (2013). Conocimiento matemático de futuros profesores para la enseñanza de la probabilidad desde el enfoque frecuencial. Bolema, 28(48), 209-229. https://doi.org/10.1590/1980-4415v28n48a11
Hernández-Solís, L. A., Batanero, C., Gea, M. M., y Álvarez-Arroyo, R. (2021a). Comparing probabilities in urns: A study with primary school students. Uniciencia, 35(2), 1-19. https://doi.org/10.15359/ru.35-2.9.
Hernández-Solís, L. A., Batanero, C., Gea, M. M., y Álvarez-Arroyo, R. (2021b). Construcción de espacios muestrales asociados a distintos tipos de sucesos: un estudio exploratorio con estudiantes de Educación Primaria. Educación Matemática, 33(1), 181-207. https://doi.org/10.24844/em3301.07
Lamon, S. (2007). Rational number and proportional reasoning. Toward a theoretical framework for research. En, F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Information Age Publishing.
Langrall, C. W., y Mooney, E. S. (2005). Characteristics of elementary school students’ probabilistic reasoning. En G. Jones (Ed.), Exploring probability in school (pp. 95-119). Springer. https://doi.org/10.1007/0-387-24530-8_5
Ministerio de Educación y Formación Profesional (MEFP) (2022). Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, núm. 52 de 2 de marzo de 2022, 24386-24504.
Ministry of Education Singapore (2012). Mathematics syllabus: Primary one to six. Singapur. Curriculum Planning and Development Division.
Ortiz, J. J., y Mohamed, N. (2014). Conocimiento de futuros profesores sobre espacio muestral. Quadrante, 23(2), 5-22.
Pratt, D., y Kazak, S. (2018). Research on uncertainty. En D. Ben-Zvi, K. Makar y J. Garfield (Eds.), International handbook of research in statistics education (pp. 193-227). Springer. https://doi.org/10.1007/978-3-319-66195-7_6
Riley, K. J. (2010). Teachers’ understanding of proportional reasoning. En P. Brosnan, D. B. Erchick y L. Flevares (Eds.), Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 6, pp. 1055-1061). The Ohio State University.
Sánchez, E., y Valdez, J. (2017). Las ideas fundamentales de probabilidad en el razonamiento de estudiantes de bachillerato. Avances de investigación en educación matemática, 11, 127-143.
Shaughnessy, J. M., y Cincetta, M. (2002). Students’ understanding of variability in a probability environment. En B. Philips (Ed.), Proceedings of the Sixth International Conference on the Teching of Statisitics [CD-ROM]. Cape Town, South Africa: International Statistical Institute.
Supply, A. S., Vanluydt, E., Van Dooren, W., y Onghena, P. (2023). Out of proportion or out of context? Comparing 8- to 9-year-olds’ proportional reasoning abilities across fair-sharing, mixtures, and probability contexts. Educ. Stud. Math, 113, 371-388. https://doi.org/10.1007/s10649-023-10212-5
Van Dooren, W. (2014). Probabilistic thinking: analyses from a psychological perspective. En E. Chernoff y B. Sriraman (Eds.), Probabilistic Thinking (pp. 123-126). Springer. https://doi.org/10.1007/978-94-007-7155-0_7
Vásquez, C., y Alsina, Á. (2017). Aproximación al conocimiento común del contenido para enseñar probabilidad desde el modelo del Conocimiento Didáctico-matemático. Educación Matemática, 29(3), 79-108. https://doi.org/10.24844/EM2903.03
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Aula Abierta